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We investigate what it might look like for a robot to work with a human on a need-finding design task 

using an affinity diagram. While some recent projects have examined how human–robot teams might explore 

solutions to design problems, human–robot collaboration in the sensemaking aspects of the design process 

has not been studied. Designers use affinity diagrams to make sense of unstructured information by clustering 

paper notes on a work surface. To explore human–robot collaboration on a sensemaking design activity, we 

developed HIRO, an autonomous robot that constructs affinity diagrams with humans. In a within-user study, 

56 participants affinity-diagrammed themes to characterize needs in quotes taken from real-world user data, 

once alone and once with HIRO. Users spent more time on the task with HIRO than alone, without strong 

evidence for corresponding effects on cognitive load. In addition, a majority of participants said they preferred 

to work with HIRO. From post-interaction interviews, we identified eight themes leading to four guidelines for 

robots that collaborate with humans on sensemaking design tasks: (1) account for the robot’s speed, (2) pursue 

mutual understanding rather than just correctness, (3) identify opportunities for constructive disagreements, 

and (4) use other modes of communication in addition to physical materials. 
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 INTRODUCTION 

n this work, we ask what it might look like for a robot to assist a human designer in the process of
ffinity diagramming (Figure 1 ). Affinity diagramming is a common design method used to identify
hemes in unstructured data, such as finding user needs from interview transcripts. Data points,
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Fig. 1. HIRO, a robotic arm, builds an affinity diagram to organize user data with a human participant. 
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uch as interview quotes, are transcribed onto paper notes that are then arranged, bottom-up, into
patial clusters combining related notes. The clusters are then labeled and used to organize insights
bout the data. 

Recent studies [ 41 , 50 , 54 ] have explored the promise of humans and robots working together
n various design tasks, e.g, through sketching or a shared tangible interface. These studies have
ncovered complex design collaboration dynamics between the human and the machine. To the
est of our knowledge, however, there has not yet been a study of how a physical robotic assistant
ight support the sensemaking aspects of the design process, e.g., need-finding and problem fram-

ng. Several digital systems have been designed to support affinity diagramming, as the method
ends itself well to data mining and insights from natural language processing tools. However,
tudies have found that some designers still prefer to work with their hands and paper media (e.g.,
 9 , 28 ]). A physical robot co-manipulating paper notes with the human designer could thus be
ell suited to the embodied nature of this design activity. Such a robot might manipulate shared
esign representations and use spatial reasoning to negotiate creative decisions with the human
esigner. 
In this article, we explore this promise and set out to answer the following research questions: 

• RQ1: How might working with a robot influence how humans construct affinity diagrams?
• RQ2: In what ways might affinity diagrams support creative collaboration between a hu-

man and a robot? 
• RQ3: How should we design robots to support cognitive aspects of designing such as the-

matic clustering? 

The contributions of this article are as follows: 

• A robotic system that uses a pretrained language model and spatial information to con-
struct affinity diagrams with a human 

• Findings from a within-user study with novices at affinity diagramming ( n = 56) suggest-
ing that participants spent more time on the task when working with the robot without
evidence of differences in cognitive load 

• A set of eight themes describing participant experiences based on post-study interviews 
• Design implications for future work exploring how robotic systems might support cogni-

tive aspects of designing 

 MOTI VATION: WH Y USE A ROBOT FOR AFFINIT Y DIAGRAMMING IN DESIGN? 

ertain elements of designing are well suited for computational systems, especially in the solution-
valuation stage of the design process. For example, computers can quickly evaluate proposed
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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esigns at scale or search large solution spaces for optimal designs more efficiently than humans
an. At the same time, the contextual and often amorphous process of formalizing design prob-
ems, happening earlier in the process, can make it difficult to access the benefits of algorithms.
nlike computer programs, human designers have the capacity to reason abductively about par-

ial information and navigate ill-defined tasks [ 17 ], which are prevalent in the early phases of
esign. 
Researchers have explored different ways to balance the benefits of computation with those

f human intuition on ill-defined design tasks. For example, interactive genetic algorithms use
uman evaluators to guide a search algorithm in domains such as floor planning [ 59 ] or fashion
esign [ 43 ]. Other work frames computation as a tool to augment the curation of inspirational
aterial [ 47 ], identify accessibility issues in user reviews [ 2 ], or support smart documentation of

he design process [ 8 ]. 
The roles that computation should play in designing have evolved in parallel with theories about

ow designers think. For example, cognitivists such as Herbert Simon thought that design prob-
ems should be formalized and solved by search algorithms [ 63 ]. Others, such as Donald Schön,
nderstood designing as situationally embedded, relegating computation to more targeted, sup-
ortive roles [ 61 ]. Recent proponents of enactive creativity (e.g., [ 14 ]) emphasize the role of in-
eractions between agents in shared environments as the driver for creative work. In an enactive
ision of human–computer creativity, humans and computers play off one another to improvise
ew ideas and perspectives. 
Framing interaction as the engine of human–computer creativity has two significant implica-

ions for how we think about computers supporting design work. Firstly, it frames humans and
omputers as collaborative peers in the creative process rather than as users and tools. Secondly,
t centers the interface through which humans and computer agents interact as a primary con-
ideration in how to design such collaborations. Our interest in robots relates to each of these
ssertions, the former through the social interaction affordances of robot design, and the latter
ia their unique ability, as computational actors, to actively interface physically with humans and
heir thought processes. 

.1 Tangibile Interfaces to Support Material Human–Machine Design Interaction 

here is strong theoretical precedent for centering social and, in particular, physical interaction in
nstructured activities such as abductive design exploration. Situated theories of design cognition
rame the designer’s thought process as a journey through acting on the world, perceiving how it
hanges, and synthesizing new ideas. Schön calls this process a “reflective conversation with the
aterials of a design situation” [ 61 ]. Ingold argues that creative synthesis is a closed loop with

ctive manipulation that follows the course of materials, just as each cut with a saw responds
o the path of the previous cut through the wood. The tangibility of this process is paramount:
for there to be a rhythm,” he writes, “movement must be felt” [ 38 ]. In design practices such as
hose in architecture, this active perception loop is evident through the pervasiveness of materially
nteractive practices such as sketching, which Goldschmidt describes as a sort of dialectic between
ifferent forms of perceiving the output of the pen [ 23 ]. 
Physically interactive and tangible interfaces are ideal for this sort of “thinking in action,” as

versky terms it [ 68 ]. In such interfaces, as Ishii observes, physical materials serve as coincident
nput and output spaces, cutting out a layer of mapping across spatial and modal discontinuities
hat might occur between a mouse and a screen [ 39 ]. Klemmer suggests that there may be value in
nterfaces that are closer to physical reality: “designing interactions that are the real world instead
f ones that simulate or replicate it hedges against simulacra that have neglected an important
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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ractice” [ 45 ]. More concretely, storing the internal state of the system in physical materials, tan-
ible interfaces afford what Ishii terms a double feedback loop , conveying immediate physical feed-
ack and persistence beyond the digital domain [ 39 ]. This can be especially important for complex
nd unstructured work: “when thought overwhelms the mind,” writes Tversky, “we put it into the
orld” [ 68 ]. Physical, tangible interfaces directly support the ability to do this. 
In addition to their cognitive compatibility with unstructured and creative synthesis, tangible in-

erfaces have certain implications for collaboration in human teams that may also apply to robots.
ornecker and Buur theorize that tangible materials can democratize collaborations by affording
ultiple similar access points to shared work [ 35 ]. Similarly, Ishii refers to the ability of tangi-

le interfaces to multiplex space in ways that may resolve awkward concurrent interactions in
raphical interfaces [ 39 ]. 
If these collaborative affordances extend to robotic agents, it opens the possibility of them phys-

cally manipulating material inputs and representations to act on a shared problem in ways that
voke a human collaborator. Robots are also well studied as social actors (e.g., [ 52 ]), laying the
roundwork to position them as collaborative peers. Building on this premise, recent work has
xplored using robots that directly interface with designers through a shared physical environ-
ent to explore potential solutions to a design problem. In the following subsections, we discuss

uman–robot collaborative design systems in more depth and describe existing non-robotic efforts
o support affinity diagramming with computation. 

.2 The Promise of human–robot Collaborative Design 

nitial studies of human–robot collaborative design (HRCD) tools have suggested ways that
uman–robot interaction might benefit human–AI collaboration when designing solutions to a
roblem. Kahn et al. noticed an increase in creative expressions when a social robot offered humans
reative prompts as they worked on a zen garden [ 41 ]. Law et al. identified social and creative
ollaboration challenges that occurred when a human and a robotic arm shared the same tangible
esign workspace [ 50 ]. They also observed instances in which participants interpreted the robot’s
hysical behavior in social ways that influenced team dynamics. Building on this work, Lin et al.
ound that a co-sketching robot can increase satisfaction and inspire unexpected directions during
deation [ 54 ] when compared with a graphical co-sketching interface. 

The still-open promise of HRCD lies in robots’ potential, as physical actors, to communicate
bout a design situation through physical materials with human designers, using established
orms about gestures and spatial reasoning. While the described studies have mostly focused on
umans and robots working together to design solutions, designing is as much about problem
raming as solution finding [ 17 ]. In this article, we explore what physical interaction with a robot
nd shared design materials, i.e. an affinity diagram, might look like within the problem-framing
spects of a human’s design process, suggesting directions to advance HRCD. 

.3 The Practice of Affinity Diagramming and Technologies to Support It 

ffinity diagramming is, loosely, a method of inductively clustering unstructured data into sum-
ary themes. It is historically associated with Kawakita Jiro, who developed the KJ method to

onstruct hypotheses about raw data. The KJ method follows four primary steps [ 62 ]: 

(1) Generate discrete labels representing pieces of data, e.g., transcribe user notes from inter-
view quotes onto note cards. 

(2) Group the labels, using a bottom-up process. For example, shuffle the user notes and suc-
cessively add them to the diagram, building up clusters as themes emerge. 
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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(3) Annotate the groupings and relationships between groups. This can be hierarchical, with
subgroupings and relationships. 

(4) Verbally explain the diagram and the insights that the team has culled from it. 

In practice, professionals construct affinity diagrams for a variety of reasons, including elicit-
ng diverse input (e.g., when brainstorming), organizing material, and analyzing data, and they
requently deviate from textbook procedures such as the KJ method defined above [ 28 ]. 

Despite the ability to construct affinity diagrams on-screen, some designers prefer using physi-
al media for this activity. For example, Borlinghaus and Huber’s design teams reported that they
ere uncomfortable working with pre-clustered notes, as they “were no longer ‘thinking with

heir hands’” [ 9 ]. This has led some to suggest that technology that supports situated design ac-
ivities such as affinity diagramming should augment tangible media and interaction, rather than
upplanting it [ 27 , 40 ]. 

With this in mind, affinity diagramming is a promising context for the study of conceptual
esign collaboration between a human and a robot. Much like sketching, affinity diagramming
rovides a way for designers to utilize space, gesture, and materials to think in and through the
orld around them. However, unlike many sketches [ 66 ], affinity diagrams are easy to interpret on

heir own. Textual notes and spatial relationships can be formalized straightforwardly, affording
easible common ground between a human and a machine. Nonetheless, the bottom-up nature
f affinity diagramming creates flexibility around the meaning of notes and groupings. Designers
llow themes and structure to emerge through the process rather than imposing any organization
n the data. In short, affinity diagramming, as an open-ended creative conversation conducted
hrough physical interactions with textual notes, is a convenient design activity through which to
bserve a human and a robot thinking together. 

2.3.1 Technological Tools for Affinity Diagramming. Pertinent to affinity diagramming, several
orms of interactive clustering have been explored, either incorporating human feedback into a
lustering algorithm [ 4 , 11 , 19 , 72 ] or vice versa [ 7 , 18 ]. However, the efficacy of bridging human
nd computer approaches in the context of affinity diagramming is not always clear. Borlinghaus
nd Huber, for example, found that asking student design teams to work on preclustered data
mpeded students’ willingness to dig into the meaning of the text [ 9 ]. 

A number of systems have been proposed to specifically support affinity diagramming in vari-
us applications, either fully digitally using a desktop or tablet interface or by augmenting paper
edia. Designer’s Outpost , by Klemmer et al. [ 46 ], was an early attempt to improve inefficiencies
ithin physical practice via hybrid tangible–digital interfaces supporting interaction using real
ost-It notes. Among the insights the authors extracted through this system was that designers
ound proximity-based auto-grouping of notes superfluous since they could already see the note
ocations [ 44 ]. AffinityFinder was a tablet interface developed to help designers find notes in a
arge diagram. The user hovered the tablet over a diagram to perform keyword search [ 29 ]. Sim-
larly, AffinityLens allowed participants to view rich informational overlays about notes and the
elationships between them when hovering a phone over parts of the diagram [ 65 ]. While these
wo systems both preserve interactions with physical media, they impose a screen between the
ser and the diagram, reducing how directly users manipulate tangible information. AffinityTable

s a tangible, rear-projection tabletop interface that allows designers to add notes using physical
edia; move, highlight, and zoom in on different portions of the diagram using physical tokens;

nd search notes based on authorship. The table also performs automatic spatial clustering and
lignment, as well as image retrieval to augment the content of notes [ 22 ]. All of these systems
odify the physical environment or provide digital overlays on the physical environment to aug-
ent the experience of affinity diagramming. To our knowledge, there is not yet a robotic system

hat directly builds affinity diagrams with a human. 
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Fig. 2. HIRO combines a UFactory UArm palletizer robot with a Raspberry Pi 4 and a Pi HQ Camera with 

a fish-eye lens. It uses the downward-facing HQ Camera to track April-tagged note cards on the surface in 

front of it. Note cards are clustered using their position on the surface via DBScan and semantic distance 

via a Sentence-BERT model on the backend. Once HIRO determines a new location for a card, it uses the 

UArm’s suction cup to move the card to that location. 
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 HIRO, A HOME IDEATION ROBOT 

o study how a robot might engage with humans in conceptual design tasks such as affinity dia-
ramming, we developed HIRO (Home Ideation RObot) , a tabletop robotic arm that collaborates
n note card–based creative tasks with a human. For example, a person might sit across from HIRO
nd work through a stack of qualitative notes together with HIRO, taking turns adding them to
 shared surface to gradually construct the thematic clusters of an affinity diagram. In the study
escribed in this article, we gave participants a stack of note cards inscribed with user data to
lace in an affinity diagram. Rather than placing every card in the diagram themselves, partici-
ants could ask HIRO to select where a note should go in the diagram by placing the card in a
esignated zone. HIRO would then pick up the card, using a suction gripper, and place it in an
xisting cluster, accounting for both the way the cards are arranged in the diagram and the text
nscribed on each card. 

In the following, we map out HIRO’s system architecture (Figure 2 ) and describe HIRO’s func-
ional and social behaviors with the system components that support each in the context of affinity
iagramming. 

.1 System Architecture 

IRO is built on the UFactory UArm [ 69 ], which we use to move cards in the shared workspace.
he UArm is a 4-DoF miniature palletizer arm with a suction gripper well suited for pick-and-
lace tasks. It is desktop scale, with a workspace of radius 36.5 cm. We instrumented the UArm’s
nd-effector with a downward-facing Raspberry Pi “High-Quality (HQ)” camera, which contains a
2.3-megapixel Sony IMX477 image sensor. We mounted a fish-eye lens onto the camera to capture
igh-resolution, wide-angle images of the entire workspace. These images are used to track cards

n the workspace and make decisions about where to place new cards in the diagram. 
A script running on a Raspberry Pi 4 takes pictures of the workspace and moves the robot, of-

oading image and text processing to an external web server for performance reasons. The web
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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erver is built using the Flask web server framework [ 58 ]. The server localizes and associates
ext with all the note cards captured in an image using AprilTags [ 21 , 73 ] printed on each card.
prilTags offer pixel-level position and orientation information about each note card, which we

ransform into workspace coordinates using the robot’s pose. Each AprilTag is associated with a
redefined quote via a lookup table. We compare relationships between quotes in the affinity dia-
ram using a pretrained Sentence-BERT (SBERT) [ 60 ] model. SBERT is a variant of BERT [ 15 ],
 language model previously used in the human–robot interaction (HRI) domain [ 37 ] that en-
odes semantic relationships in unstructured text using vectors. Based on the clusters of notes it
dentifies and encodes in the workspace, the server tells the Pi where to place new cards, using the

ethod we describe below. 

.2 Affinity Diagramming with HIRO 

IRO takes turns with a human to place note cards on a shared affinity diagram based on the
iagram’s current state. These turns are always initiated by the human; HIRO is not designed to
roactively modify the diagram. Indeed, HIRO does not rearrange any cards that are already placed
n the diagram, only adding cards on demand that the human places in a designated location in
he workspace. HIRO also does not create new clusters, only adding cards to existing clusters
s defined by the current arrangement of cards. These design choices were intended to simplify
nteractions between HIRO and the human for the purpose of this study. The process by which
IRO adds cards to the diagram is described below and illustrated in Figure 3 . 

3.2.1 Adding Cards to the Affinity Diagram. HIRO periodically takes photos of the workspace
o locate any currently visible cards on the table. The designated “add zone” is a rectangular region
arked to HIRO’s left and the participant’s right. Whenever HIRO locates a card in this designated

one, it samples a place for it to go in the diagram using both spatial and semantic information
rom the affinity diagram. 

To accomplish this, HIRO first generates a map of current card locations from all detected April-
ags and uses DBSCAN [ 20 ], a density-based clustering algorithm, to group them into spatial
lusters according to how close they are to one another in the workspace. We chose to use a
ensity-based clusterer for flexibility in the number of spatial clusters HIRO could identify. 
HIRO then converts each spatial cluster into an embedding representation as follows: it first

ooks up the text on each note in the cluster via a dictionary keyed on its AprilTag identifier; it
hen concatenates these texts into a single string document to represent that cluster. The resulting
luster “paragraph” is then encoded into a cluster embedding using the pretrained SBERT model
paraphrase-mpnet-base-v2’ [ 60 ]. HIRO finally encodes the text on the new card using the same
BERT model and assigns it to the closest cluster in the embedding space based on its Euclidean
istance to the receiving cluster. Once it has selected a cluster, HIRO generates physical coordinates
n the diagram to place the card by sampling a point near the center of all the cards in that cluster.

ith a target location, HIRO finally moves to add the card to the diagram. It first performs a gaze
nimation described below before turning to the add zone, moving down to pick up the card, then
otating to drop the card at the generated coordinates. This results in an auditory, physical, and
isual interaction, as it includes the high-pitched noise of the servo motors, the humming of the
acuum, and the thump of the suction cup dropping onto the card it is picking up. 

3.2.2 Social Behavior. HIRO is also programmed to perform social behaviors that don’t directly
nvolve affinity diagramming. Robots have long been studied as social actors. Previous work in
RCD suggests that humans will interpret a collaborative design robot’s behaviors in social ways,

.g., collegial, dismissive, or antagonistic [ 50 ], even if they have not been designed that way. We
esigned the following behaviors to convey intentionality in HIRO’s actions and emphasize HIRO’s
ttention to the shared diagram. 
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Fig. 3. When a person wants HIRO to place a card (i), the individual puts it in a designated zone (ii). HIRO 

sees the card and spatially clusters notes in the diagram using DBSCAN (iii). HIRO then stitches together and 

encodes the text in each cluster using a pretrained Sentence-BERT model (iv). HIRO identifies the cluster clos- 

est to the new note in the embedding space (v), then picks up the note and moves it to the selected cluster (vi). 
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• Breathing: Rather than sitting idle between turns, HIRO continuously moves in a slow,
pre-programmed periodic motion. HRI researchers have long suggested adding periodic
motions to enhance animacy of an idle robot [ 25 , 34 ]. Cuijpers and Knops found that idle
motions such as breathing, swaying, or random head movements increased human social
responses to a robot [ 13 ]. HIRO’s palletizer mechanism constrains its end-effector to be
parallel to the plane of its base at all times. Exploiting this, we created an idle breathing
motion through which HIRO pulls its end-effector up and back, then down and forward
again, without changing its angle with respect to the diagram on the shared work surface.
This motion maintains the camera’s orientation on the diagram and was intended to evoke
task engagement, even when HIRO is not actively interacting with the note cards. 

• Following: With a small probability, HIRO will also turn slightly towards the side of the dia-
gram where it infers activity while waiting for a turn based on images from its downward-
facing camera. We implemented this using a three-direction image classifier. Even if not
always accurate, this motion was intended to convey attention towards the human’s focus
and is an analogue to Cuijpers and Knops’s idle head movements [ 13 ]. 

• Gaze: Finally, when the user gives HIRO a card, it first turns and hovers over each cluster
that it detects in the current diagram, pausing briefly above each one before pulling back
and initiating its motion to pick up the new card. Since the images that HIRO captures from
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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the camera in its end-effector contain the entire workspace, this movement is not necessary
to locate and process how notes are arranged in the diagram. Instead, it is designed to
express intentionality and gaze attention to the spatial structure of the diagram. 

 USER STUDY: AFFINITY DIAGRAMMING USER NEEDS WITH HIRO 

e ran a within-user study (n = 56) to examine how the process and experience of affinity dia-
ramming with HIRO compared with working alone. Based on what we observed in initial pilot
essions of users affinity-diagramming with HIRO, we thought that working with HIRO might
hange the pacing of the task and perceived cognitive load. More importantly, we hoped to learn
rom participants’ experiences what it was like to collaborate with a sensemaking robot through
 physical diagram and identify key design considerations in their experiences. 

.1 Study Design and Procedure 

e used a mixed-methods approach to address our goals. To provide a simple quantification of
he differences between treatments, we measured completion time and participants’ self-reported
ognitive load for each, evaluating hypotheses about the directionality of observed effects. These
etric choices were informed by pilot studies. To get a richer understanding of how the experience

f working with HIRO differed from working alone, we relied on participants’ accounts via a semi-
tructured interview conducted at the end of each study session. 

4.1.1 Hypotheses. We sought to quantify aspects of working with HIRO in order to establish
aseline differences that distinguished the experience from working alone. Our hypotheses do not
eek to establish the superiority of either condition, and the variables that we measured to evalu-
te them are appropriately broad for an initial study. For example, we measure the amount of time
articipants spend on the task using task completion time. Intuitively, the amount of time the par-
icipants spend could be influenced by the need to adjust to physically and cognitively working
ith a robot, including waiting for it to move, considering its point of view, and so on. Under-

tanding these nuances would be necessary to determine whether an observed effect positively or
egatively influenced the experience, and completion time is not granular enough to distinguish
hese nuances. Instead, as a first step, we sought to simply establish whether participants would
pend longer to construct a diagram with the robot and flesh out potential explanations in our
hematic analysis of participants’ accounts. 

Based on conversations and observations from a series of five informal pilot sessions in which
e had users build affinity diagrams with HIRO, we sought to evaluate the following hypotheses:

(1) H1: Participants will spend more time on the task when working with HIRO: Taking turns
with HIRO should enforce a slower pace, and participants may need to spend more time
making sense of the data when negotiating with the robot than when working alone. As
one pilot participant told us, “The robot was a lot slower, so it forced me to think more,
because while I would be waiting for the robot to make its move, I would also be thinking,
looking around more. But it was also a little frustrating.”

(2) H2: Participants will report higher mental demand when working with HIRO: Participants
may need to think more to account for and make sense of the robot’s opinions and any
differences with their own. As a pilot participant explained, “Working with the robot,
sometimes it’s challenging, because if the robot put a card in a cluster that I think doesn’t
belong to the cluster, it kind of disrupts my own definition of the cluster.”

(3) H3: Participants will report lower frustration when working with HIRO: Participants may
enjoy working with the robot or feel less pressured to do well on the task with its help.
As a pilot participant put it, “I feel the robot made me a lot more relaxed because I felt I
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Fig. 4. Examples of note cards with quotes from (a) the graduate student dataset and (b) the teacher dataset, 

and (c) an example of a cluster that a participant created with HIRO for the graduate student data. 
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had another companion who was also putting some thought into it. It sort of set the pace
very well and it also here and there gives some good ideas.”

In our full study, we measured H1 via completion time, and H2 and H3 via subscales of the
ASA Task Load Index (TLX) [ 31 ]. We set a sample size of n = 56 to evaluate these hypotheses
ia a power analysis using pilot data. In order to support transparency and reproducibility, we
reregistered our hypotheses and quantitative analysis plan ( https://aspredicted.org/HN7 _ 6RK ).
here were no additional dependent variables measured to evaluate our hypotheses. 

4.1.2 Task and Treatments. Each study participant constructed two affinity diagrams: one on
ne’s own and one with HIRO. Each affinity diagram was constructed using one of two different
atasets: (1) a survey of graduate student experiences during the COVID-19 pandemic [ 51 ] and (2)
n interview study with teachers about their experiences during the same pandemic [ 70 ]. Example
uotes from each dataset can be found in Figure 4 . We selected 28 quotes from each dataset and
rinted them on two stacks of cards. For each treatment, we asked participants to organize the
uotes from one stack into clusters representing that community’s primary needs. Figure 5 and
igure 6 illustrate the physical setup and procedure for each experiment, respectively. 

The note cards for a particular treatment were stacked face down in a small container directly
n front of HIRO’s base. When working alone, participants placed every card in the diagram them-
elves, with HIRO sitting in front of them but shut off. When working with HIRO, participants took
urns placing note cards with HIRO, which was introduced in the study script as follows: “For this
et of user data, you will be working with HIRO, an ideation robot. Instead of adding every card
o the affinity diagram yourself, you and HIRO will take turns placing the next card. When it is
IRO’s turn to place a card, take the next card off the deck and put it in the blue rectangle on the

op right of the workspace. HIRO will then add the card where it thinks it makes the most sense in
he diagram.” Participants were given discretion over which cards, when, and how many to share,
nd were reminded that they could move any card in the diagram at any time during the process.

In order to train participants on how to interact with HIRO without biasing how they built con-
eptual clusters, the researcher briefly demonstrated working with HIRO to sort a set of cards by
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Fig. 5. Experimental Setup: Studies were run in a closed room with video and audio recording equipment. 

Participants sat on one side of the room at the end of a table facing HIRO. Diagrams were constructed on 

a placemat with an outline of HIRO’s approximate workspace reach. During the study, the researcher sat 

across the room at another table to monitor the system. 

Fig. 6. Experimental Procedure: After consent and briefing, participants completed two affinity diagrams in 

turn, one with HIRO and one alone. Each diagram was built from different user data (teachers or graduate 

students). Treatment and dataset order were randomly assigned. After each treatment, participants com- 

pleted a NASA TLX survey. At the end of the study, they completed a Godspeed survey and a semi-structured 

interview. 
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olor. These cards did not have text on them and were clustered using RGB values. We randomized
oth treatment order and the assignment of dataset to treatment in order to counterbalance effects
rom either learning or differences between the datasets (see Figure 6 ). 

4.1.3 Procedure. The full study procedure is shown in Figure 6 . Studies were run in a closed,
indowless room, with tables and video and audio recording equipment (Figure 5 ). One table was

et up lengthwise on each side of the room. HIRO was placed, facing outwards, at the end of one
able, on top of a placemat with outlines of its reachable workspace and the note card “add zone.”
articipants sat at the end of the table facing HIRO. Each study was recorded with two cameras:
ne on a tripod and boom that captured a top-down view from above the shared workspace and
ne on a short tripod facing the participant. A directional microphone was also pointed towards
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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he participant, on the table next to HIRO. The other table was set up on the other side of the room–
ere, the researcher would sit with a laptop to start, stop, and monitor the robot. The researcher
ould answer any questions the participant had during the study. 
Each study was run according to a detailed checklist and script enumerating the sequence of

teps to set up the system and recording equipment, introduce the participant to the study and
he robot, and initiate and conclude each treatment. Following the informed consent process and
emographic survey, the researcher invited the participant to sit in front of the robot and briefly
xplained affinity diagramming as “a tool that designers use to organize information into themes
nd identify different needs in target communities.” They then introduced the user data and task
s follows: “Today you will be working with quotes from surveys and interviews with two differ-
nt demographic groups, teachers and Cornell grad students, about their experiences during the
OVID-19 pandemic. Each quote is recorded on a note card. Your job is to go through these quotes
ne by one and organize them into clusters as you go. Before you finish, you will also label each
luster with a Post-It note describing the theme or need that cluster represents. The idea is that a
esigner can then design something to address the needs that you’ve identified for that group of
eople. You will do one affinity diagram on your own and one with a robot.”
Before each treatment, participants were reminded that their task was to cluster the note cards

nto themes. They were also reminded that they could have as many or few clusters as they wanted
nd could move any card around the diagram at any time. Finally, they were asked to read the cards
nd think aloud as they worked. An example cluster from a participant’s affinity diagram is shown
n Figure 4 (c). 

Participants took as much time as they needed to complete each affinity diagram, timed by
he researcher. If participants forgot to label their clusters, they were reminded to do so before
ompleting the diagram. On completion, participants verbally explained their groupings to the re-
earcher, then filled out the NASA TLX [ 30 , 31 ] via a digital survey, measuring cognitive load over
ix subscales: mental demand, physical demand, temporal demand, performance, effort, and frus-
ration. At the conclusion of the study, participants completed a Godspeed survey [ 6 ] evaluating
ow they perceived HIRO as a social robot. 

4.1.4 Semi-structured Interviews. Each study finished with a semi-structured interview compar-
ng the experience of affinity diagramming with the robot and working alone. Semi-structured

nterviewing (SSI) is a frequently used method in qualitative interviews that falls between the
losed structure of a survey and the complete open-endedness of unstructured methods. SSI em-
hasizes conversational interviewing around a list of topics (an “interview guide”) rather than fol-

owing a fixed questionnaire [ 1 ]. Often, this involves probing followup questions or judiciously let-
ing the interviewee drive the dialogue. Our researchers were trained in this approach and worked
ff the list of topics in Table 1 . The interviewer would typically begin with the first question on the
ist, asking participants to broadly compare the two treatments. They would then move to cover
he remaining topics in the order that the conversation dictated. Researchers were encouraged to
robe for details or specific examples to flesh out participants’ responses, as suggested in the inter-
iew guide. There was no set length for the interviews, which lasted an average of 9 minutes and
4 seconds and typically concluded with the interviewer giving the interviewee an opportunity to
sk questions about the study. 

4.1.5 Participant Recruitment and Demographics. Participants were recruited using mailing
ists, fliers, and a university credit system. The study was reviewed by the university institutional

eview board (IRB) and all participants gave written informed consent before participating. We
btained release signatures for any photos or videos that are used in publications. 
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Table 1. Topics Covered in the Post-study Semi-structured Interviews, Along with Opportunities for 

Follow-up Questions 

Interview Topics 

How was working with the robot versus alone? Can you illustrate with specific examples? 
Can you describe your process when working with the robot? (If doesn’t touch on personal 
process: How did that differentiate from working alone?) 
Did anything surprise you when working with the robot? Can you give a specific example? 
Would you prefer working with the robot or alone to build an affinity diagram? (If response is 
unclear: Do you think you performed better with or without the robot?) 
To what extent do you feel HIRO understood what you were thinking? To what extent did you 

understand what HIRO was thinking? 
What percentage of the final outcome would you attribute to the robot? 
Did you ever disagree with the robot and, if so, how did you handle it? Why did you handle 
the disagreement this way, e.g., why did you choose to override the robot or not? 
Do you think working with the robot was different than what you would imagine working 

with a human on this task would be? How so? 

Fig. 7. Participants rated their familiarity with robots, designing, brainstorming, and affinity diagramming, 

as well as their feelings about robots, on a scale of 1 to 7. Participants reported low familiarity with affinity 

diagramming and were well disposed to robots. 
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Participants were between the ages of 18 and 62 years old ( μ = 22 . 8 , σ = 6 . 12 ). A total of
3 participants identified as female, 11 as male, and 2 preferred not to respond. We asked par-
icipants to rate their familiarity with robots, designing, brainstorming, and affinity diagramming,
s well as their feelings about robots, on a scale of 1 to 7. Their responses, plotted in Figure 7 ,
ndicate that participants were unfamiliar with robots and affinity diagramming but tended to be

ore familiar with designing and brainstorming in general. Also, participants were well disposed
owards robots prior to the study. 

 FINDINGS 

n the course of our study, we collected survey data on per-treatment cognitive load via NASA
LX and perceptions of HIRO via Godspeed, as well as task completion time, audio recordings
f post-study interviews, video and audio data of the task, and the cluster labels that participants
enerated for each affinity diagram they made. Below, we present quantitative findings to evaluate
ach of our study hypotheses. We also present post-hoc analysis of how participants split the task
f adding notes to the diagram with HIRO and immediately responded to its choices, the number
f clusters that they created from the user data, and their perceptions of HIRO as a social robot.
inally, we discuss eight themes that we identified in our post-study interviews. 
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Fig. 8. Participants tended to spend more time on the task when working with HIRO than alone. The left plot 

shows the distribution of differences between treatments for each participant. On the right, the posterior 

distribution of these differences, with indicated priors, is centered at 289.4 seconds longer with an 89% HDI 

from 238.6 to 340.2 seconds (shaded interval), outside the ROPE of ±34 . 4 seconds (green dashed lines). 
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.1 Experimental Findings 

5.1.1 Task Completion Time. During each study, the researcher hand-timed each treatment,
rom the first card draw until participants declared that they were finished. Some times were man-
ally corrected for technological issues or delays. Participants spent an average of 18 minutes and
6.3 seconds overall across treatments. They spent, on average, 294.6 more seconds (4 minutes and
4.6 seconds) working with HIRO than working alone, with a standard deviation of 343.9 seconds,
lthough six participants spent less time working with HIRO than working alone. 

We adopted a Bayesian approach to analyze this effect, modeling the mean difference in com-
letion time using a normal likelihood function with a weakly informed normal prior over the
ean centered at M μ = 0 with standard deviation, S μ = 240 seconds and a fixed standard devia-

ion, S y = 240 seconds. To evaluate an effect in completion time, we compared an 89% highest

ensity interval (HDI) for the posterior distribution of the mean difference in completion time
etween treatments to a region of practical equivalence (ROPE) of 0.1 standard deviations
round zero [ 49 ]. 

When using a normal likelihood function with priors of μ ∼ N (M μ , S μ ) and fixed standard de-
iation S y , the posterior distribution on μ is a normal distribution with closed-form solutions for
he mean and standard deviation [ 48 ]. The posterior distribution over the mean difference in com-
letion time, given our data and priors (Figure 8 ), is centered on 289.4 seconds, with an 89% HDI
rom 238.6 to 340.2 seconds, well outside the ROPE of −34.4 to 34.4 seconds. This suggests that,
ith 89% probability, the mean difference in completion time between treatments is between 238.6

econds (3 minutes and 58.6 seconds) and 340.2 seconds (5 minutes and 40.2 seconds) longer when
orking with HIRO. As such, there is strong evidence to support H1 . Prior and posterior predictive

hecks for this analysis can be found in Appendix A , as well as a sensitivity analysis over different
arameterizations of the priors. 

5.1.2 Cognitive Load. H2 and H3 predicted that participants would report higher mental de-
and and lower frustration, respectively, two subscales of NASA TLX, when working with HIRO.
e again applied a Bayesian analysis to the differences in reported TLX scores between treat-
ents, using a normal likelihood with a normal prior over the mean and fixed standard deviation.

o model the effect in each of these two subscales, we parameterized the mean prior with mean
ero and standard deviation 20, and fixed the standard deviation at 20. 

As can be seen in Figure 9 , again using a ROPE of 0.1 standard deviations around 0, our data does
ot support either hypothesis. The posterior distribution for mental demand is centered around a
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Fig. 9. Study data did not support a conclusive difference between participants’ cognitive load along the two 

NASA TLX [ 30 , 31 ] dimensions of mental demand and frustration when working with HIRO, as seen here 

in the distribution of observed differences (row one) and posterior over the mean difference with indicated 

priors (row two). Total TLX scores are shown for reference on the right. As the HDI (shaded interval) overlaps 

the ROPE (green dashed lines) in each posterior, there is insufficient evidence to conclude credible effects. 
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ifference of 0.35 points on a 100-point scale. The frustration posterior is centered at 3.3 points.
oth HDIs overlap the ROPE significantly, inhibiting any conclusions about the effect of HIRO
n mental demand and frustration. Prior and posterior checks, as well as sensitivity analysis over
he prior parameters, can be found in Appendix B . Beyond our hypotheses, we also did not find
vidence to support meaningful effects across the remaining four subscales of TLX (see the right-
and column of Figure 9 ). 

.2 Dividing Card Placements with HIRO 

o get a sense of how participants divided the task of constructing their affinity diagrams with
IRO and how they immediately reacted to HIRO’s choice of placement, we analyzed card place-
ents in each session. Specifically, we video-coded the number of cards that HIRO placed in

ach session (placements) and the number of times that participants chose to immediately change
IRO’s placement (reversals). Placements were defined as time segments beginning with HIRO
icking up a card and ending with the participant taking a new card. Reversals were defined as
ime segments starting with participants picking up a card that HIRO just placed and ending with
hem placing it elsewhere. 

Two authors independently coded the study videos using ELAN [ 74 ]. This coding primarily
elied on video data, using audio to resolve ambiguous cases. The coders met once to discuss edge
ases they encountered. For instance, we classified instances in which HIRO physically failed to
ick up the card and the participant, inferring what it meant to do, moved the card for HIRO, as
lacements. The coders met once more to check and fix discrepancies and identify disagreements.
welve disagreements between the coders were then independently resolved by a third author,
esulting in a final set of 797 placements and 241 reversals. 

As seen in Figure 10 , participants let HIRO place an average of 14.2 cards ( σ = 4 . 77 ), which
orresponds to roughly half the cards in the stack. Participants immediately modified an average
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Fig. 10. HIRO made an average of 14.2 card placements per session, with participants immediately modifying 

an average of 4.3 placements. Participants were given control over how to distribute placements between 

themselves and HIRO. Some participants asked HIRO to place cards that were already in the diagram, which 

could lead to sessions in which the number of times HIRO placed a card exceeded the number of cards in 

the deck. 

Fig. 11. On average, the ratio of HIRO’s moves that participants immediately modified to its overall place- 

ments was 0.297, spanning from 0.0 to 0.7. 
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f 4.3 placements ( σ = 2 . 95 ). Placement numbers can be higher than the total of 28 in the stack
f, for example, participants took a card out of the current diagram and asked HIRO to re-place it
omewhere. Overall, we found a great range in how participants divided and responded to card
lacements. HIRO placed as few as 4 and as many as 36 cards in a session; participants immediately
odified as few as 0 and as many as 16 of these placements. For each participant, the ratio of

eversals to placements averaged 0.297 ( σ = 0 . 143 ), ranging from 0.0 for a session in which HIRO
laced 13 cards to as high as 0.7 for a session in which it placed 10 cards (Figure 11 ). 

.3 Topics Identified by Participants 

e counted the topics that participants covered in their groupings as a way of characterizing the
iagrams that they produced. Across both datasets, participants tended to create slightly fewer
lusters when working with the robot ( μ = 5 . 61 , σ = 1 . 87 ) than when working alone ( μ = 6 . 46 ,
= 1 . 89 ). Figure 12 plots the distributions of the number of clusters participants created in each

reatment, overall and broken down by the user data they were affinity diagramming. 

.4 Perceptions of HIRO as a Social Robot 

t the end of the study, participants completed a Godspeed [ 6 ] survey measuring their perceptions
f HIRO as a social robot. Godspeed asks participants to rate their impressions of a robot on a
cale of 1 to 5 between pairs of adjectives describing its anthropomorphism, animacy, likeability,
erceived intelligence, and perceived safety. Participants’ responses are summarized in Figure 13 .
Participants’ perceptions of HIRO reflected its design as a non-humanoid cognitive robot. Over-

ll, participants rated HIRO as more likeable ( μ = 4 . 09 , σ = 0 . 85 ) and intelligent ( μ = 3 . 78 , σ =
 . 84 ) than anthropomorphic ( μ = 2 . 73 , σ = 1 . 11 ) or animate ( μ = 3 . 22 , σ = 1 . 00 ). Drilling deeper
eveals some interesting contrasts within these subscales. For example, when thinking about
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Fig. 12. Participants tended to create slightly fewer clusters when affinity diagramming with HIRO ( μ = 5 . 61 , 

σ = 1 . 87 ) than when working alone ( μ = 6 . 46 , σ = 1 . 89 ), as seen in the third row above. This trend was small 

but consistent across both sets of user data that participants worked with (rows one and two). 

Fig. 13. Participants rated HIRO with higher likeability and perceived intelligence than anthropomorphism 

and animacy. Within the latter two categories, they rated HIRO as more natural and conscious than human- 

like, lifelike, or elegant, and as more alive, lively, interactive, and responsive than organic and lifelike. 
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nthropomorphism, participants rated HIRO as machinelike, artificial, and moving rigidly, yet at
he same time natural and conscious. Likewise, in terms of animacy, they rated HIRO as mechan-
cal and artificial but also alive, lively, interactive, and responsive. The perceived safety subscale
sks participants to rate their own emotional state rather than their impressions of the robot. Here,
articipants largely reported feeling relaxed and calm after working with HIRO but more quiescent
han surprised. 

 THEMATIC ANALYSIS OF POST-STUDY INTERVIEWS 

ach study concluded with a semi-structured interview comparing the experience of working with
IRO to working alone (see Section 4.1.4 ). In these interviews, 33 participants said they preferred

o work with HIRO, 14 preferred to work alone, and 9 did not express a clear preference. We
xtracted a set of themes from our post-study interviews using a thematic analysis conducted via
ffinity diagramming. Precedents for this analysis method include, for example, Nunes et al. [ 56 ]
nd Lucero [ 55 ]. 

To perform this analysis, we first used a third-party service to transcribe the interview audio.
wo authors then segmented the transcripts into notes bearing quotes representing the key ideas
rticulated by each participant. Three authors then collaboratively affinity diagrammed these user
otes to identify the eight themes that are presented in Table 2 and described below. This affinity
iagramming took place across 5 weeks with the three authors, who were not co-located, meeting
n seven virtual collaborative sessions. The notes were divided randomly among the three au-
hors, who each took turns adding them one at a time onto a shared board, where clusters repre-
ented thematically similar notes. Authors temporarily labeled clusters as the diagram developed,
ut would also reorganize if a more compelling grouping emerged as new notes were processed.
isagreements were handled as they arose by voting. At the end of this process, the affinity dia-
ram contained labels at different levels of abstraction, which the authors organized into the eight
hemes discussed below. Themes are illustrated using representative interview quotes; the speaker
or each quote is identified as P x(yP , zR), where x is the participant identifier, y is the number of
IRO card placements in their session, and z is the number of reversals. 

.1 Second Perspectives Provided by the Robot 

articipants identified several ways that having HIRO as a second perspective affected the ex-
erience of affinity diagramming. Some participants appreciated HIRO as an additional decision
aker, especially when they were unsure about how to cluster certain notes. “I felt like I was just

oing along a straight one-way road when I’m working alone,” said P1 (20P, 2R), “but with the
obot, I felt like I had some kind of company with the thinking process and some optional solu-
ions to rely on when I’m stuck.” HIRO also led some participants to explore more alternatives
han they did alone. P40 (14P, 2R): “I felt like I was changing a lot more when I was with the ro-
ot, [ . . . w]hereas, when I was working [alone], I didn’t switch a card once.” Even when HIRO’s
erspective wasn’t convincing, evaluating it reinforced their confidence in their own decisions.
52 (16P, R8), despite disagreeing frequently with HIRO’s choices, said “I also feel more secure,
ecause I actually thought more about it.”
HIRO’s second perspective helped participants resolve uncertainty. “Sometimes in my mind,”

escribed P13 (13P, 4R), “I’m not really sure which group this would go to. And then, the robot
ould decide, and I’d be like, oh, that make sense.” P26 (14P, 4R): “I don’t feel very confident
orking with open-ended questions by myself. Another person’s decision would definitely help.
nd HIRO is pretty intelligent to me and I appreciated his help.” This was especially important at

he beginning, as P11 (14P, 3R) told us: “I was indecisive at first. [ . . . ] But with the robot [ . . . ] it
ictated a path [ . . . ] it was much easier to categorize things in that way.” For others, simply seeing
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Table 2. Themes Extracted from Post-study Interviews, Aspects of Individual User Experiences that 

Describe Each Theme, Corresponding Design Guidelines (Denoted DG) and Representative Quotes 

Theme Participants felt that . . . DG(s) Representative Interview Quote(s) 

Second 
Perspectives 

• Having an additional decision-maker 
introduced a new perspective. 

• Seeing HIRO’s choices could reduce 
uncertainty. 

• Checking or fixing HIRO’s choices took 
extra effort. 

• It could be stressful to have your work 
checked. 

DG2, 
DG3 

• “With the robot, I felt like I had some kind of company with the 
thinking process and some optional solutions to rely on when 
I’m stuck.”

• “I felt like I was changing a lot more when I was with the robot, 
[ . . . w]hereas, when I was working [alone], I didn’t switch a 
card once.”

• “I had to think harder about it to figure out whether or not I 
wanted to change the way I initially approached it.”

• “I felt like when you sit at the kitchen table and do math 
homework with your dad. And you know that they’re 
watching, knowing the correct answers, and thinking you’re 
stupid for making the wrong decisions.”

Mutual 
Understanding 

• Shared understanding with HIRO was 
dynamic over the course of the task. 

• Disagreements could be reasonable or 
inexplicable. 

• Repeated or inexplicable disagreements 
could undermine collaboration. 

DG2 

• “We were learning a common language at that point. We were 
building off of things that can be used to inform 

understanding. But before that critical mass of information 
occurs, I did not understand what HIRO was doing.”

Cognitive Load 

• It took additional effort to include 
HIRO in the task. 

• Working with HIRO could reduce 
overthinking. 

• HIRO could help to automate the task. 

DG3 

• “Myself, I could make the organization make sense in my head, 
but [with HIRO] I wanted to make sure it was clear so they 
could detect the different clusters,”

• “Alone . . . there are different aspects I would rethink over and 
over again, compared to if the robot would just take the card 
and place it in a particular stack [and] I would try to think of 
the why and not.”

• “The robot just became more of a time-saving machine. It’s, 
like, a way to double my bandwidth.”

Pacing and 
Flow 

• Waiting for HIRO was slow or the extra 
thinking required more time than 
working alone. 

• HIRO moved too fast and distrupted 
their desired pace. 

• The reduced pace allowed them to 
reflect or plan as they went. 

DG1 

• “You had to wait for the robot a lot. Sometimes, it would take a 
while to go and get the card and figure out where it wanted to 
put it.”

• “Definitely it takes more time to work with a robot, which is 
good because I think it allowed me to re-examine my 
decisions.”

Enjoyment 

• Working with HIRO was fun. 
• HIRO was socially engaging. 
• Figuring out HIRO was like playing a 

game. 

—

• “It was friendlier, I don’t know how else to put it, but it was 
more enjoyable.”

• “I feel like we connected. I feel like we’re friends. I would be 
very sad if HIRO doesn’t like me.”

Nonverbal 
Communication 

• Verbal communication could simplify 
collaboration mechanics. 

• Verbal communication could support 
more explanation, debate, and 
higher-level discussion of concepts. 

• The lack of mechanisms to argue with 
HIRO was beneficial. 

DG4 

• “I can’t talk to the robot and explain my thinking. And if HIRO 

was a human, I would ask them what they were thinking.”
• “I’m a little introverted and he doesn’t talk back but he gets the 

job done.”
• “It feels like my thoughts, my worries, my insecurities are just 

put out there and I just don’t have anyone to reassure me or 
guide me in the right direction.”

Perceived 
Intelligence 

• HIRO’s ability to contribute was 
bounded according to how they 
understood its reasoning to function 
internally. 

• HIRO’s movements influenced how 

they perceived its intelligence and 
animacy. 

DG2 

• “It went about as I expected it to go, a robot sorting human 
concerns. People obviously innately understand human 
struggles more than many robots are capable of.”

• “[ . . . ] I could reason myself and get to the same place he did. 
So, there was more thought I guess, and less algorithm.”

• “It’s very mechanical, but also I could see a human quality kind 
of like pondering as he went.”

Roles and 
Power 
Dynamics 

• HIRO could play different collaborative 
roles, from a reference tool to a 
decision-maker. 

• It could be more or less appropriate for 
HIRO to either define clusters or sort 
cards into clusters. 

• Differences in knowledge, physical 
constraints, or their empathy towards 
HIRO contributed to a sense of power 
dynamics between them and the robot. 

DG1, 
DG3 

• “I was the sole person making categories, then [HIRO is] 
somebody who’s just helping me sort things.”

• “[ . . . ] instead of having to generate categories myself I could 
either agree or disagree with the robot.”

• “[ . . . ] I definitely saw our power dynamic; the robot had more 
power and knowledge in this area.”

• “I think my reasoning trumps his, but not in a disrespectful 
way [ . . . ]”

• “It felt like I was offending him, because it can’t defend itself, 
right?”

ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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IRO’s opinion could help clarify their decisions. As P28 (14P, 4R) explained, “When HIRO picked
the note] up, [ . . . ] just the act of watching it make a decision, I was, like, okay, I actually know
here I want this to go.”
At the same time, many participants found it more stressful or less efficient to deal with HIRO’s

erspective on the data. Participants complained about having to double check HIRO’s work, in-
ibiting their ability to work intuitively. Instead of going off “the first thing that popped into my
ead,” said P45 (15P, 9R), “I had to think harder about it to figure out whether or not I wanted
o change the way I initially approached it.” This was particularly challenging when participants
requently disagreed with the robot. P51 (10P, 7R) told us that working with HIRO was a burden,
because I was trying to fix things I didn’t agree with.” Some participants found it more stressful to
ave HIRO checking on their work. P56 (14P, 4R) remembered feeling judged in HIRO’s presence.
s they described it, “HIRO is, like, a genius machine that has been programmed to know how to
o this. And I’m just coming in as an undergraduate in college. And so, I felt like when you sit at
he kitchen table and do math homework with your dad. And you know that they’re watching,
nowing the correct answers, and thinking you’re stupid for making the wrong decisions.”

.2 Mutual Understanding: Getting on the Same Page with HIRO 

articipants perceived varying degrees of mutual understanding with HIRO about the structure
f the diagrams they were constructing together. Some felt on the same page as HIRO early on in
he process, while others struggled to understand HIRO or felt like HIRO didn’t understand their
hought process. 

This sense developed over the course of the task. “As the experiment went on,” P14 (13P, 3R)
ecalled, “HIRO started placing cards in clusters that I started agreeing with more. So, in that
ense, I felt like he was learning and paying attention.” For P28 (14P, 4R), mutual understanding
eveloped through collaboration: “We were learning a common language at that point. We were
uilding off of things that can be used to inform understanding. But before that critical mass of
nformation occurs, I did not understand what HIRO was doing.” Some participants never reached
hat tipping point with HIRO, leaving them frustrated and confused. For example, P6 (18P, 8R),
ho was excited to work with HIRO, at some point decided: “I’m very confused and I’m trying

o generalize the idea behind this category but I have been struggling; so I’m just going to leave
IRO out of this, I’m going to start deciding on my own.”
Participants tended to categorize disagreements with HIRO as either reasonable or inexplica-

le. Reasonable disagreements, for example, could occur when participants were conflicted about
here to place a card. “I moved it,” P3 (14P, 1R) explained, “But I could see why HIRO put it there
ecause I was also kinda debating between those two categories.” When participants failed to parse
IRO’s reasoning, it could undermine mutual understanding, even if they mostly agreed with its
lacements. “I feel like I didn’t understand HIRO . . . we agreed on a good amount of items but there
ere some choices that I was very confused by,” said P2 (15P, 6R). 
While repeated disagreements could erode trust, some participants worked to repair gaps in
utual understanding with HIRO. For example, P1 (20P, 2R) described reversing an earlier decision

o override HIRO as P1 started to see its point of view, saying, “I thought it was an error, and then
t made more sense after I knew what the other cards were and realized the robot was probably
ight.” When P23 (14, 4R) couldn’t make sense of HIRO’s choices, P23 tried to make clusters clearer,
emarking that, “HIRO was pretty much telling me this category doesn’t make sense.”

.3 How HIRO Affected the Cognitive Load Required for the Task 

espite the minimal differences measured by NASA TLX, participants described increased or de-
reased aspects of cognitive load when working with HIRO. As discussed in Section 6.1 , it could be
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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urdensome to check HIRO’s work or more stressful to think with HIRO watching. Participants
lso devoted effort to ensuring that HIRO could see and understand how they were organizing
he cards. This manifested at a physical level, either in arranging cards, e.g., as P44 (12P, 6R) said,
myself, I could make the organization make sense in my head, but [with HIRO] I wanted to make
ure it was clear so they could detect the different clusters,” or in sharing the workspace, e.g., as
23 (14P, 4R) said, “I had to make sure to keep my hands back because HIRO was trying to read.”
t a conceptual level, P37 (16P, 5R) worked to make sure that HIRO could interpret P37’s clusters,

easoning that “I wanted the robot to implicitly recognize the themes . . . so this motivated me to
ave ones that are really similar together.”
On the other hand, some participants felt that simply having HIRO place some cards reduced

heir workload. P36 (9P, 2R) reasoned that HIRO “basically [made] the same decisions I would
ave made. I could have had the same outcome without him but maybe it was easier on me and

ess decision fatigue.” For some, working with HIRO reduced overthinking. “Alone . . . there are
ifferent aspects I would rethink over and over again,” explained P20 (9P, 2R), “compared to if the
obot would just take the card and place it in a particular stack [and] I would try to think of the
hy and not.” For others, HIRO offered a form of automation, as per P1 (20P, 2R): “the robot just
ecame more of a time-saving machine. It’s, like, a way to double my bandwidth.” In the end, P30
13P, 5R) mused, “It comes down to, do you want to work on a group project by yourself? Or do
ou want to use it with somebody who is helpful to you and that you can try and figure it out
ogether? I think just cognitively it helps you take a load off, right?”

.4 How HIRO Affected the Pacing and Flow of the Task 

n line with our quantitative findings, several participants noted that working with the robot
lowed down the pace of the task. Some attributed this to the physical delay in waiting for the
obot to find, pick, and place a card. As P11 (14P, 3R) described it, “You had to wait for the robot a
ot. Sometimes, it would take a while to go and get the card and figure out where it wanted to put
t.” Alternatively, P2 (15P, 6R) explained that thinking things through with HIRO took more time:
If HIRO put a card down . . . that I was unsure of, I would think about it more deeply. Whereas
hen you’re working alone, you’re, like, this is my thought. So, that’s why it’s faster.” In contrast,

ome participants actually found the robot to move too quickly, in a way that rushed them or dis-
upted their desired workflow. P15 (13P, 6R) told us, “When I work with the robot I feel a bit tense
ecause I felt like I have to keep up with its pace.”
Beyond pacing, some found that working with HIRO changed the flow of the task, forcing them

o process the cards incrementally. “I think working alone was a bit easier because first I got to
ead all the cards before deciding what clusters to make and while working with the robot I had
o decide as it happened, as we placed the cards, which clusters to create,” explained P8 (13P, 3R).

While several participants preferred the faster pace when they worked alone, some participants
ound value working at a slower pace with the robot as it offered them more time to reflect on
heir decisions as well as to plan ahead as the robot was working. “Definitely, it takes more time
o work with a robot, which is good because I think it allowed me to re-examine my decisions,”
aid P16 (26P, 8R). “I had more time while the robot was working to conceptualize the different
ections that were going on,” said P40 (16P, 4R). 

.5 Enjoyment: The Experience of Working with HIRO 

articipants found certain aspects of working with HIRO to be enjoyable in their own right. For
ome, working with a robot was simply more engaging. “I don’t really know why that is, but it was
un to work with the robot,” said P5 (15P, 4R). Others felt a sense of social connection to the robot.
It was friendlier,” said P3 (14P, 1R). “I don’t know how else to put it, but it was more enjoyable.” “I
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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eel like we connected. I feel like we’re friends. I would be very sad if HIRO doesn’t like me,” said
52 (16P, 8R). Finally, for some, working with HIRO took on an element of mystery, and trying to
nderstand HIRO added an interesting dimension to the task. “I would use it sort of like a game. I
ould see how it interacted. It would be more fun for me to interact in that way,” said P53 (18P, 2R).

.6 Nonverbal Communication: Limits in Creative Collaboration 

IRO was designed to communicate with participants through placements in the shared affinity
iagram and had no ability to communicate verbally. To some, the lack of verbal communication
ade the mechanics of collaboration more challenging, specifically wanting support for explana-

ions and debate. 
Participants desired to both explain their reasoning to HIRO and hear HIRO explain its reasoning

o them. “I can’t talk to the robot and explain my thinking,” said P8 (13P, 3R). “And if HIRO was a
uman, I would ask them what they were thinking.” P7 (14P, 7R) put it a bit more bluntly, saying,
I don’t know its thoughts so I cannot brainstorm with it.” HIRO’s inability to communicate the
ationale behind its choices led some to reject it as a collaborator. “I feel like because HIRO can’t
xpress their opinion,” P21 (14P, 2R) told us, “I can’t really come to a compromise, so I decided to
ust go with what I thought. So it’s not very much a collaboration.”

Participants felt that verbal communication would allow for more argumentation between hu-
an and robot. “With a person,” reasoned P4 (12P, 1R), “you’d be constantly bouncing ideas back

nd forth and trying to come to some sort of middle ground that you both agree on,” whereas,
s P37 (16P, 5R) put it, “The robot is just sort of saying, ‘Here,’ and you can take it or leave it.”
his placed the burden of handling disagreements on the human. P17 (11P, 5R) explained, “[hu-
ans] can actually exchange information if there’s a disagreement or if any modifications need

o be made . . . but with HIRO, it’s me handling the situation.” Overall, P18 (21P, 12R) argued, “a
ollaborator should demonstrate its argument.”

Participants, however, were split on whether they would rather work with an agent that could
rgue with them or not. Some participants appreciated the ability to overrule HIRO without having
o argue with it or account for its feelings. As P9 (14P, 3R) told us, “From my experience working
ith other groups, there must be a compromise when there’s idea conflicts. And, for me, it’s very

nefficient during the working process. But for the robot . . . I noticed that we do not have conflicts.”
ome described HIRO’s muteness as a good fit for their personality and collaboration preferences.
s P36 (9P, 2R) put it, “I’m a little introverted and he doesn’t talk back but he gets the job done.”
hat said, silence could be socially jarring, e.g., as P12 (15P, 6R) put it, “It feels like my thoughts,
y worries, my insecurities are just put out there and I just don’t have anyone to reassure me or

uide me in the right direction.”

.7 Perceived Intelligence: Can a Robot Understand Human Issues? 

articipants’ mental models of HIRO could color their interactions with it. Participants rated HIRO
s relatively intelligent (see Figure 13 ). However, assumptions about how HIRO was processing
nformation shaped expectations about how it could assist on this task. For example, some differ-
ntiated the levels of insight at which an algorithm and a human could characterize human needs.
I think it went about as I expected it to go, a robot sorting human concerns,” said P5 (15P, 4R),
people obviously innately understand human struggles more than many robots are capable of.”
ccasionally, HIRO’s decisions challenged such assumptions. P12 (15P, 6R), for example, believed

hat, “this context as a human that you have surrounding each of these comments . . . HIRO might
ot have that sort of context.” However, they told us, as the study went on, “a lot of the choices
HIRO] made, I could reason myself and get to the same place he did. So, there was more thought
 guess, and less algorithm.”
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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HIRO’s movements also influenced participants’ perception of its intelligence and agency, for
xample, the way that HIRO scanned the diagram before placing a new card. “It was almost like
atching someone and sort of following their thought process,” said P22 (7P, 2R). P12 (15P, 6R)

uggested, “It’s very mechanical, but also I could see a human quality kind of like pondering as
e went.” “Sometimes it feels as though it’s fast. Other times it feels like it’s slow,” said P21 (14P,
R), “sometimes it feels enthusiastic. Other times, it’s like taking time to process and be careful.”
36 (9P, 2R) interpreted HIRO’s movements in a collaborative sense, “like he was taking a second
o think about how I was thinking before placing his card.” Not everybody felt the same way. P1
20P, 2R) and P31 (7P, 2R) expressed confusion as to why HIRO was moving over the diagram or
oving in between turns, respectively, whereas P18 (21P, 12R) found it distracting if HIRO moved
hen P18 was trying to think. 

.8 Roles and Power Dynamics: Making Creative Decisions with HIRO 

articipants attributed different collaborative roles to HIRO. Some viewed HIRO as a reference tool
o check their thinking or to offer ideas when needed. For example, P1 (20P, 2R) said that HIRO,
gave me more possible solutions or options around which way I should go with organizing.”
thers allowed HIRO to assume more control, including delegating clustering decisions. P9 (14P,
R) explained that, “when I make sure that it’s in the same logic with me, there’s no need for me
o carefully read every card. And it’s automatic.” At an extreme, P43 (13P, 0R) told us that if given
he chance to work with HIRO again, P43 would let HIRO “place everything and just play on my
hone, and then after HIRO does it, I can just check its work.”
Oftentimes, roles split across defining categories and sorting cards. P23 (14P, 4R) described HIRO

s being “constrained to what I had set forth,” and “I was the sole person making categories, then
HIRO is] somebody who’s just helping me sort things.” Others simply preferred the role of cre-
ting categories. As P27 (12P, 3R) said, “I don’t want the robot to start making new categories for
e, because I kind of wanted to make the categories.” Some participants, however, used HIRO’s

nput to define categories, e.g., P5 (15P, 4R): “[HIRO] would put things down and instead of having
o generate categories myself I could either agree or disagree with the robot.”

Sometimes, roles reflected power dynamics with HIRO. P16 (26P, 8R) described deferring to
IRO: “when I first started doing the card sorting, I definitely saw our power dynamic; the robot
ad more power and knowledge in this area.” For P15 (13P, 6R), power imbalance inhibited col-

aboration: “I think it’s smart. So I don’t want to challenge it. Sometimes I think it places the card
n the wrong place, but I’m not sure if I should move it. So I prefer working alone.” Others felt

ore comfortable overriding HIRO as they saw fit. “I think my reasoning trumps his,” P12 (15P,
R) explained, “but not in a disrespectful way.” In the end, some participants observed that HIRO’s
imitations, physical or otherwise, gave more power to the human. “I think ultimately the human
ill always have at least just a little bit more control,” P37 (16P, 5R) told us, “because the robot

an move it so many times but I can also just move it . . . a lot quicker than the robot.” Sometimes,
his came with emotional consequences. P52 (16P, 8R) worried about hurting HIRO by rejecting its
uggestions: “It felt like I was offending him, because it can’t defend itself, right? It can’t be like,
No, actually, I’m going to put it back. So I’m kind of the decision power here.”

 DISCUSSION 

e have described a system and study that we developed to research human–robot collaboration
n a sensemaking design task, specifically, need-finding through an affinity diagram. We were
nterested in three questions: how working with HIRO might influence how humans construct
ffinity diagrams, how affinity diagrams perform as a human–robot collaborative medium, and
hat to consider when designing robots to support activities such as affinity diagramming. We
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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tart by discussing the first two of these questions, followed by a consideration of the unique
ontext of our participants’ limited experience with affinity diagramming. We then present a set
f implications for the future design of human–robot collaborative design systems. 

.1 How Did Working With a Robot Influence How Humans Constructed Affinity 

Diagrams? 

ur findings suggest several ways that HIRO’s presence affected participants’ affinity diagram-
ing experiences. Participants tended to work more slowly with HIRO. While this could be at-

ributed to the speed of the system or the overhead of collaboration, it is worth noting that some
articipants spent less time on the task when working with HIRO (see Figure 8 ). Further, despite
he turn-taking dynamic, the division of time between human and robot effort was not a zero-sum
ame: several participants described thinking about or working on the task while HIRO was mov-
ng. While they did not report overall differences in cognitive load, several participants described
ays that HIRO affected their cognitive load, stress, enjoyment, or social engagement. Working
ith HIRO could inspire participants to consider alternative interpretations of the data. Sometimes,

his increased perceived effort and the difficulty interpreting choices could be frustrating. HIRO
ould also mitigate uncertainty about individual cards or the overall direction of the diagram. 

These findings reflect prior studies on how interaction with other humans affects cognition and
reativity. Tversky and Hand [ 67 ], for example, found that the mere presence of a human actor
n a photograph encouraged people to adopt the actor’s perspective when describing objects in
he photo. Paulus cites findings that suggest that exposure to others’ perspectives can increase
ndividual creativity [ 57 ], affording a wider base to explore ideas, commingling cognitive styles,
nd applying heterogeneous knowledge sets to a problem. At the same time, group social dynamics
uch as productivity blocking, evaluation apprehension, and free-riding can inhibit creativity [ 16 ].

That said, while participants saw HIRO as intelligent and likeable, they tended not to perceive it
s anthropomorphic. Some participants believed that a robot could never understand human con-
erns, and participants were frustrated that HIRO was unable to explain and defend its ideas like
 human. This mirrors the argument by Guckelsberger et al. that creative agency in machines re-
uires not just creative acts but also explanations that reflect and maintain a creative identity [ 26 ].
his remains a significant challenge for human–machine collaborative design. 

.2 How Might Affinity Diagrams Support Creative Collaboration Between a Human 

and a Robot? 

he context we investigated here, affinity diagramming for need-finding, is unexplored in the
uman–robot creative collaboration realm. How did the medium of shared note sorting perform

n the design process? 
As in human collaboration in affinity diagramming, participants usually used spatial position

o communicate with the robot about the relationships between notes. Even when they disagreed
ith HIRO, participants attributed conceptual meaning to where the robot placed the cards. In
any cases, they constructed mutual understanding with HIRO about how to interpret the data

ver the course of several card placements. 
That said, we observed clear communication limitations to collaborating through the diagram

lone. In a few cases, participants were confused by ambiguous card placements. Participants also
isliked the unequivocal nature of HIRO wordlessly placing cards, wanting to hear its reasoning
r to negotiate with it. This, combined with uncertainty around how HIRO was thinking, could re-
trict the degree to which participants felt like they were collaborating well with the robot. In short,
he affinity diagram was sometimes effective at communicating opinions , but not reasoning , and
IRO’s movements over the diagram expressed that it was thinking but not what it was thinking.
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Ultimately, while the shared affinity diagram did not consistently fulfill participants’ collabora-
ion needs with HIRO, we also saw glimpses of how such a diagram could serve as the engine of
utual understanding in a highly unstructured task, such as need-finding. 

.3 Interpreting Participant Experiences Through a Lens of Task Expertise 

n reflection, several elements of the themes we observed reflect novice design behaviors that
ay have emanated from our participants’ relatively low self-reported experience with affinity

iagramming. 
Novices and experts are known to exhibit different behaviors, and much work has gone into

haracterizing these differences in the context of unstructured problems. Cross’s comprehensive
urvey of expertise in design [ 12 ] finds several important tendencies that characterize experts
n early-stage design work: experts are solution focused and use conjectures to scope problems
arly on; experts tend to adopt to and stick to early design concepts rather than exploring many
lternatives; and, finally, experts are opportunistic in their methods and frequently switch between
arallel cognitive activities. 
The divide between the tendencies that Cross attributes to expert designers versus novice de-

igners surfaced in our participants’ stories and the themes we extracted from our interviews. For
nstance, several participants remarked that HIRO gave them a direction to explore or injected
bjectivity into the task, suggesting a lack of willingness or ability to conjecture from experience.
articipants also noted that working with HIRO required a collaborative overhead compared with
orking alone. This could be distracting, preventing participants from following “the first thing

hat popped into [their] head” or applying a more top-down structured process. In contrast, oth-
rs noticed themselves exploring different options or getting un-stuck by watching HIRO make a
ecision, evoking the kind of cognitive switching that an expert might already use effectively in
nstructured problem-solving. 
Experts who were more familiar with this particular design activity may have had very different

xperiences working with HIRO than our participants. For example, switching between different
deas or ways of thinking could be more distracting for an expert who is already thinking along
arallel tracks. Likewise, using HIRO as a proxy for conjecture and problem-scoping would likely
ot have appealed to an expert with the accumulated experience to make those decisions confi-
ently and intuitively. While HIRO making choices could offer a safe sense of direction to someone
ho feels uncertain, the same behaviors could be burdensome for an expert user who would prefer

ontrol and flexibility to opportunistically define their own path. On the other hand, an expert’s
olution-oriented focus might provide more useful context to the robot compared with a novice
ore fixated on the present. 
In sum, we might expect experts at tasks such as affinity diagramming to look for different

inds of help than novices would in ways that are more tailored to their own processes rather
han broadly suited to the general design activity at hand. 

.4 How Should We Design Robots to Support Conceptual Aspects of Designing? 

ased on what we learned about affinity diagramming user needs with a robot, we propose the fol-
owing guidelines for designing robots to support similar conceptual design activities, particularly
ith novice users. 

(1) Account for the robot’s speed. Consider how fast a robot moves when determining
the roles it plays to support design activity. For various reasons, participants in our study
tended to spend more time on their diagrams when working with HIRO than when they
were working alone. One factor that contributed to this was the perceived need to wait
for HIRO while it was making a move. For at least one participant, the need to take turns
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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stifled the individual’s preferred flow for running through all the cards before choosing
placements. Others, in contrast, suggested it moved too quickly, disrupting them or mak-
ing them feel tense. Our findings suggest that the perceived effects of a collaborative ro-
bot’s speed may influence the flow of a creative activity in nuanced ways. By conventional
human–robot fluency metrics such as idle time [ 33 ], a slow robot should be judicious about
undertaking tasks with long-running motions. That said, idle time can also offer a human
partner time to stop and think while sharing the floor. For some of our participants, the dif-
ference in pacing from working alone provided opportunities to re-examine their choices
or conceptualize the meaning of the current clusters. Overall, for different participants
and purposes, the speed at which a robot moves could have both benefits and challenges
in terms of cognitive collaboration. 

This suggests that the speed at which a robot is designed to move should align with
the needs of a specific human collaborator and task. Of course, technical or safety limits
may constrain the degree to which a robot’s speed can be adjusted. With this in mind,
an alternative approach is to consider the kinds of tasks the speed at which a robot can
move are suited for. 

This guideline connects to the different roles participants gave the robot. For instance,
a slower robot might be better suited to define clusters or handle difficult cases, whereas
a faster robot might be more appropriate for automation or tasks that can be completed
asynchronously without the human’s attention. 

(2) Pursue mutual understanding in creative collaborations. Second, consider the sys-
tem design goal of mutual understanding rather than more straightforward goals such
as agreeing with the user or exposing the user to alternatives. Getting on the same page
with HIRO was a process that informed many participants’ experiences. One participant
described the experience as building up to speaking a common language with HIRO, some-
thing only possible once some critical mass of shared experience had been achieved. Par-
ticipants’ willingness to engage in this process suggests several opportunities, most no-
tably for novices at an unstructured task. 

For example, establishing mutual understanding with a robotic partner could provide
a gentle entry point for exploration. Our interviews revealed that some participants
credited HIRO with providing early direction or a sense of objectivity. That said,
simply providing initial directions could inhibit a novice’s willingness to explore more
deeply [ 9 ]. The process of developing mutual understanding with HIRO suggests a better
alternative. Many participants described testing, rationalizing, and rebutting HIRO’s
choices, with a desire to engage them more discoursively. If the system prioritizes this
process of developing mutual understanding with a tool such as HIRO, it could offer
low-stakes incentives to nontrivially engage in speculative directions for those without
the confidence that comes with expert intuition. 

What might this look like? Bratman describes shared cooperative activity as rooted in
mutual responsiveness, demonstrated commitment to the joint activity, and commitment
to mutual support [ 10 ]. Through utterances or actions, a robot might might explicitly
signal its commitment to developing mutual understanding with a user beyond simply
finishing the task. For a robot such as HIRO, actions such as frequently inspecting the
human’s clusters before making a move or identifying and pointing out clusters that it
finds less cohesive might encourage the human to reciprocate and, ultimately, support
both more collaboration and exploration. 

(3) Identify opportunities for constructive disagreements. Beyond the dynamics of de-
veloping mutual understanding between a human and a robot, our findings suggest that
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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there may be opportunities for a robot to challenge humans in a collaborative sensemaking
task. Several participants described needing to think more about their choices or chang-
ing their mind when working with HIRO. One of our participants described needing more
surprise from HIRO to see it as a compelling creative partner. This resonates with prior
work in computational creativity support, including several projects that suggest ways
to encourage creative shifts (e.g., [ 42 , 54 ]) or explore formalizing surprising ideas [ 24 ],
pointing to the usefulness of constructive disagreement. 

That said, not all disagreements are equal: our participants distinguished between dis-
agreements they could rationalize and ones that didn’t make sense to them. In some cases,
the content of the disagreement could be immaterial: one participant told us that simply
seeing a decision from HIRO helped the individual to reach one’s own, regardless of agree-
ing or not. In short, characterizing the role of disagreement in a creative collaboration with
a robot is multifaceted. 

Unsurprisingly, this mirrors the complexity of conflict in human creative collaborations.
Badke-Shaub et al. found that design teams that were relatively more confrontational and
less collaborative tended to generate more functional and innovative ideas, although they
still exhibited mostly collaborative behavior [ 5 ]. However, conceptual conflict can esca-
late to damaging affective conflict in teams [ 3 , 64 ], a relevant design consideration for any
collaborative robot with social behaviors. We saw elements of this in participants who
perceived a social connection or power dynamics with HIRO that affected their willing-
ness to override it when they disagreed with HIRO. This kind of dynamic could present
both a constraint and a degree of opportunity to push creative boundaries within reason,
using the social connection as a kind of buffer to affective conflict. Others appreciated
that HIRO was non-confrontational, offering a second perspective without apparent so-
cial consequences. Finding the right balance of creative agreement and confrontation be-
tween a human and robot in an unstructured task demands attention to what constitutes
constructive or destructive disagreements in each context. 

The context of physical collaboration with a robot adds a particularly salient dimension
to this discussion. Klemmer argues that embodiment carries risk, because choices are more
visible and physical actions express commitment to those choices [ 45 ]. This sense of risk
is an interesting lens through which to view our findings around second perspectives and
power dynamics, whether participants felt hesitant to override HIRO’s choices or simply
anxious feeling their own actions were being scrutinized. Klemmer et al. point out that
this riskiness can work both ways: increasing focus and attention on the task but also con-
straining willingness to think divergently. Beyond how participants perceived risk in their
own actions, the visibility of HIRO’s actions also carried risk in terms of how participants
perceived its intentions, intelligence, or helpfulness. In literally changing a participant’s
arrangement of cards, HIRO expressed a commitment to a particular interpretation of the
data that demanded a response. In a sense, the purely physical and uncompromising na-
ture of HIRO’s behaviors amplified this risk—it had no way of, for example, lowering the
level of commitment by verbally expressing uncertainty about a placement. This leads
into our final design guideline, which addresses the nature and limits of communicating
solely through shared physical materials. 

(4) Use other modalities of communication in conjunction with physical materials.

Participants’ desire to converse with HIRO reflected limitations on what HIRO was able to
communicate nonverbally. While the diagram communicated relationships between notes,
participants wanted to discuss the motivations behind choices that they or the robot made.
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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To support this, we suggest using physical representations such as affinity diagrams in
conjunction with other modalities that can add depth when needed. 

While verbal dialog that includes explanations and debate is a straightforward way
to add nuance, this is not the only solution. For example, one participant suggested high-
lighting key text on cards. HIRO could also use gestures to broaden communication; Heiser
et al. describe teammates gesturing over maps to support collaboration and cognition [ 32 ].
Some of our participants gestured with or over note cards, and many interpreted mean-
ing in HIRO’s movements over the diagram. Beyond pointing gestures, the functions of
metaphoric and iconic gestures in collaboration and creativity have been studied in hu-
man teams [ 53 , 71 ]. While less explored in HRI ( e.g., [ 36 ]), metaphoric and iconic gestures
may be particularly useful to ground creative exploration in human–robot collaborative
design. 

A physically shared diagram may afford forms of communication beyond the intended
conceptual organization of the diagram itself. For example, while coding placements,
we observed participants covering a cluster to hide it from HIRO or placing cards be-
tween clusters to indicate indecision. Overall, there is a rich interaction space to ex-
plore at the boundaries of what material representations explictly afford, a space that
might yield more intricate human–robot dialogues of the sort that arise in unstructured
problem-solving. 

 LIMITATIONS AND FU T URE WORK 

he study and findings that we have described have several important limitations with respect to
heir scope and generalizability. 

.1 Study Limitations 

n terms of scope, our hypotheses and study measures were designed to provide a starting point
o characterize what working with a robot on a sensemaking task such as affinity diagramming
ight look like. In combination with our qualitative analysis, we hope this provides a founda-

ion for future exploration. However, given the rich nuances that we observed, we caution against
nterpreting broad measures such as completion time in this context normatively. It is also impor-
ant to consider the relative inexperience of our participant pool with the design activity and how
his reflected in our findings. As we’ve discussed, novices and experts are thought to behave quite
ifferently in unstructured activities, and our observations of our participants often aligned with
endencies of novice designers. We thus caution against applying our findings and takeaways to
xpert designers. Nonetheless, we believe that this work provides useful insights for the design
f robotic systems to specifically support novices at unstructured design activities such as affinity
iagramming. 
Another limitation of this study concerns the limited data that participants diagrammed. For

he sake of time and, more importantly, the limitations of HIRO’s workspace, participants only
rganized 28 user notes. In reality, most affinity diagrams are constructed to parse many more
otes than this. At least one participant pointed out that scaling the robot would be an issue, and

t is not clear how scaling up the data and workspace might influence how people collaborate with
he robot. 

Finally, despite our efforts to standardize the treatments, some participants noticed a learning
ffect between treatments or felt that one set of user data was easier to work with than the other.

hile we randomly counterbalanced our treatments to offset this, the individual experiences we
ecounted could still have been influenced by this effect. 
CM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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.2 System Improvements and Future Directions 

hile it was not the main focus of this study, HIRO’s semantic encoding could likely be improved
ith several simple changes, including evaluating different distance metrics and performing di-
ensionality reduction before clustering. 
Additionally, to simplify its behavior for this study, HIRO only added cards to the diagram. It is

airly straightforward to imagine strategies of, for example, splitting large clusters by subclustering
he spatially informed embeddings obtained for the notes in that cluster. While increasing the
ariety of actions that HIRO takes should expand the ways that it can support a human user, it
lso introduces a number of design challenges in determining when it should take what behavior,
nd how the behaviors should be implemented, considering the guidelines we posed above. 

 CONCLUSION 

IRO is a tabletop robotic arm designed to affinity diagram textual data with a human partner,
eveloped to study what it might look like for a robot to engage with a human in a sensemaking
esign activity. In a within-user study of n = 56 novice participants, we found evidence that work-
ng with HIRO increased the time that participants spent on the task without compelling evidence
or any corresponding effect on cognitive load. Post-study interviews attributed the temporal in-
rease to time spent accounting for both the speed of the robot and its point of view. Individual
articipants suggested aspects of working with the robot that were more or less cognitively de-
anding, depending on how they chose to collaborate with it. This, in turn, varied according to a

ombination of how participants perceived HIRO’s intelligence and how they interpreted power
ynamics between themselves and the robot. Participants sought mutual understanding with HIRO
bout the task and each other. This developed over time alongside their own understanding of the
hared data. These efforts also revealed limitations to nonverbal communication in supporting
uman–robot collaborative sensemaking. 
Based on these findings, we suggest that those who develop robots to collaborate with human

esigners on sensemaking tasks design around the robot’s speed, frame the collaboration to pursue
utual understanding rather than only design outcomes, identify opportunities for constructive

isagreements, and use verbal and nonverbal modalities of communication in conjunction with
hysical materials. 

PPENDICES 

 TASK COMPLETION TIME ANALYSIS DETAILS 

he findings on H1 were based on a Bayesian analysis of the recorded differences in completion
ime between treatments. This difference was modeled as a normal distribution with an unknown
ean and fixed standard deviation of 240 seconds. 

.1 Prior Predictive Checks 

or our analysis, we adopted a weakly informative prior over the mean as a normal distribu-
ion centered around zero with a standard deviation of 240 seconds. The prior predictive check
n Figure 14 (a) shows 1,000 samples generated from a normal distribution with a fixed standard
eviation of 240 for each of 1,000 draws from this prior over μ. The outputs are reasonable, with
ost of the density between −1,000 and 1,000 seconds, or roughly 17 minutes, which would be a

ery large but not unreasonable time difference. 
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.2 Posterior Predictive Checks 

o run a posterior predictive check, we sampled 1,000 values for each of 1,000 draws of μ from the
osterior distribution. The resulting samples are plotted in Figure 14 (b) and resemble the overlaid
bserved data. 

Fig. 14. Prior and posterior predictive checks for H1. 

.3 Sensitivity Analysis 

o test the sensitivity of this result to our choice of prior, we calculated the posterior
sing different parameterizations of the mean prior ( M μ ∈ {−120 , −60 , 0 , 60 , 120 } and S μ ∈

180 , 240 , 300 , 360 , 420 , 480 , 540 }) and different values for the fixed standard deviation ( S y ∈
180 , 240 , 300 , 360 , 420 , 480 , 540 }). We also tested a Half-Cauchy prior over S y instead of fixed val-
es, with varying scale parameters ( β ∈ {120 , 240 , 360 }), using MCMC via PYMC. 1 The HDI and
ean of each posterior for μ with fixed S y is plotted in Figure 15 and with the Half-Cauchy pri-

rs over S y in Figure 16 . Across all tested priors, the HDI is above the ROPE, without overlap,
uggesting that the observed effect is robust to our choice of priors. 
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Fig. 15. Sensitivity analysis for H1 with fixed priors over S y . 
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Fig. 16. Sensitivity analysis for H1 with Half-Cauchy priors over S y . 
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 COGNITIVE LOAD ANALYSIS DETAILS 

or the two findings regarding H2 and H3 , we performed a Bayesian analysis of the reported
ifferences in mental demand and frustration, respectively, via the corresponding subscales of
ASA TLX. We modeled both of these differences as normal distributions with an unknown mean
nd fixed the standard deviation at 20 points based on the underlying 100-point scale. 

.1 Prior Predictive Checks 

or both subscales, we adopted a weakly informative prior over the mean of a normal distribution
entered around zero with a standard deviation of 20 points’ difference. The prior predictive check
n Figure 17 (a) shows 1,000 samples generated from a normal distribution with a fixed standard
eviation of 20 for each of 1,000 draws from this prior over μ. The density of the outputs falls almost
ntirely between −100 and 100 points, the maximum possible differences for each TLX subscale,
ith most of the density between −50 and 50. 

.2 Posterior Predictive Checks 

or each of the posterior distributions, we sampled 1,000 values for each of 1,000 draws of μ from
he posterior distribution. The resulting samples, plotted in Figures 17 (b) and 17 (c) mostly re-
emble the distribution of the overlaid observed data, although the kernel density estimate of the
rustration data has a somewhat higher peak and thicker right tail than the distribution of samples
enerated from draws from the posterior. 

Fig. 17. Prior and posterior predictive checks for H2 and H3. 

.3 Sensitivity Analyses 

o gauge the sensitivity of our results to our choice of prior, we calculated the posterior for each
ubscale with their respective observations using different parameterizations of the mean prior
 M μ ∈ {−20 , −10 , 0 , 10 , 20 } and S μ ∈ {5 , 10 , 20 , 30 , 40 , 50 }) and different values for the fixed stan-
ard deviation. We also tested a Half-Cauchy prior over S y instead of fixed values, with varying
cale parameters ( β ∈ {5 , 20 , 50 }) using MCMC via PYMC. 1 The HDI and mean of each posterior
or μ are plotted in Figures 18 and 19 and Figures 20 and 21 for H2 and H3, respectively. For men-
al demand, the HDI overlaps the ROPE in all trials except some with a fixed standard deviation,
here S μ = 5 and M μ = 20 or −20 , where it is above and below, respectively. For frustration, again,

n some trials with a fixed standard deviation, where S μ = 5 and M μ = 20 or −20 , the HDI falls out-
ide the ROPE, above or below, respectively. Additionally, the HDI is consistently slightly above
nd outside the ROPE in cases in which the fixed standard deviation S y = 5 , which may not be
 realistic prior insofar as the observed differences in frustration scores had a standard deviation
f 20.4. In all other trials, including all of the trials with a Half-Cauchy prior over the standard
ACM Trans. Hum.-Robot Interact., Vol. 13, No. 1, Article 10. Publication date: March 2024. 
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Fig. 18. Sensitivity analysis for H2 with fixed priors over S y . 
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Fig. 19. Sensitivity analysis for H2 with Half-Cauchy priors over S y . 
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Fig. 20. Sensitivity analysis for H3 with fixed priors over S y . 
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Fig. 21. Sensitivity analysis for H3 with Half-Cauchy priors over S y . 
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eviation, the HDI overlaps the ROPE. Overall, although there are some cases in which the HDI
s outside the ROPE, it would be difficult to conclude that there is a clear effect across choice of
riors in either case, and certainly not the hypothesized effects of increased mental demand and
educed frustration. 
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