
SplatOverflow: Asynchronous Hardware Troubleshooting
Amritansh Kwatra

Cornell Tech
New York, USA

ak2244@cornell.edu

Tobias Weinberg
Cornell Tech

New York, USA
tmw88@cornell.edu

Ilan Mandel
Cornell Tech

New York, USA
im334@cornell.edu

Ritik Batra
Cornell Tech

New York, USA
rb887@cornell.edu

Peter He
Cornell University

Ithaca, USA
ph475@cornell.edu

François Guimbretière
Cornell University

Ithaca, USA
fvg3@cornell.edu

Thijs Roumen
Cornell Tech

New York, USA
tjr92@cornell.edu

Figure 1: A workflow illustrating a non-expert end-user using SplatOverflow to troubleshoot an issue with their hardware. (a) A
SplatOverflow scene consisting of a user-captured scan of their hardware registered to the hardware’s CAD model. (b) The
user queries technical documentation and past issues associated with the hardware by clicking on components in the scene.
(c) They request help from maintainers by sharing their SplatOverflow scene. (d) A maintainer explores the SplatOverflow
scene and instructs the end-user to move their machine. (e) The local user sees instructions rendered as an overlay on their
workspace and repositions their machine. (f) A maintainer compares the as-built hardware to the as-designed CAD model and
suggests a solution. (g) The local user executes the suggestion and fixes the issue. (h) Once resolved, the issue, instructions, and
deliberation are indexed back into a database of past issues for future users to reference.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License.
CHI ’25, April 26-May 1, 2025, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3714129

ABSTRACT
As tools for designing and manufacturing hardware become more
accessible, smaller producers can develop and distribute novel hard-
ware. However, processes for supporting end-user hardware trou-
bleshooting or routine maintenance aren’t well defined. As a result,
providing technical support for hardware remains ad-hoc and chal-
lenging to scale. Inspired by patterns that helped scale software
troubleshooting, we propose a workflow for asynchronous hard-
ware troubleshooting: SplatOverflow.

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://doi.org/10.1145/3706598.3714129


CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kwatra et al.

SplatOverflow creates a novel boundary object, the SplatOver-
flow scene, that users reference to communicate about hardware.
A scene comprises a 3D Gaussian Splat of the user’s hardware
registered onto the hardware’s CAD model. The splat captures
the current state of the hardware, and the registered CAD model
acts as a referential anchor for troubleshooting instructions. With
SplatOverflow, remote maintainers can directly address issues and
author instructions in the user’s workspace. Workflows contain-
ing multiple instructions can easily be shared between users and
recontextualized in new environments.

In this paper, we describe the design of SplatOverflow, the work-
flows it enables, and its utility to different kinds of users. We also
validate that non-experts can use SplatOverflow to troubleshoot
common problems with a 3D printer in a usability study.

Project Page: https://amritkwatra.com/research/splatoverflow.

CCS CONCEPTS
• Human-centered computing→ Interactive systems and tools.

KEYWORDS
Hardware Maintenance, Repair, Troubleshooting
ACM Reference Format:
Amritansh Kwatra, Tobias Weinberg, Ilan Mandel, Ritik Batra, Peter He,
François Guimbretière, and Thijs Roumen. 2025. SplatOverflow: Asynchro-
nous Hardware Troubleshooting. In CHI Conference on Human Factors in
Computing Systems (CHI ’25), April 26-May 1, 2025, Yokohama, Japan. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3706598.3714129

1 INTRODUCTION
Hardware design tools have enabled small teams to develop and
distribute novel machines and devices for niche applications. Ex-
amples of this type of hardware range from automation equipment
for mid-scale manufacturing, such as the Lumen pick-and-place1,
to personal fabrication machines, like the Prusa MK3S2, to do-it-
yourself gadgets like the Open Book3 e-reader. We refer to such
products generally as hardware. For hardware producers, turning a
prototype into a viable product entails addressing challenges that
stem from supporting a growing user base with varying techni-
cal expertise [35]. This paper focuses on one aspect of producing
hardware: supporting end-user troubleshooting and maintenance.

Detailed and thorough documentation is an essential part of
developing a hardware product [3, 11, 35]. However, documenta-
tion alone is insufficient to support the long tail of niche hardware
issues consumers may encounter [56]. Instead, Subbaraman and
Peek [66] argue that maintenance should be considered a core part
of owning this kind of hardware, and systems should be designed to
support end-user troubleshooting and maintenance. We take inspi-
ration from the infrastructure that supports software maintenance
and troubleshooting workflows to examine how to create similar
systems for hardware.

Platforms such as GitHub and StackOverflow have supported
communities of software users by allowing them to help one an-
other troubleshoot issues and by cataloging a history of past issues

1https://www.opulo.io/products/lumenpnp
2https://help.prusa3d.com/tag/mk3s-2
3https://www.oddlyspecificobjects.com/projects/openbook/

for anyone to reference. Crucially, these platforms rely on asynchro-
nous communication between users. This allows users to seek out
help or provide suggestions without coordinating availability or
scheduling meetings with one another. Eliminating this barrier has
allowed distributed communities of users to flourish and made asyn-
chronous modes the norm in software development [2, 77]. This
contrasts the workflows HCI researchers have proposed for remote
expert guidance and hardware troubleshooting, which are primarily
designed for synchronous modes of communication [29, 30, 54].

The utility of asynchronous workflows for troubleshooting is
due, in part, to how they facilitate communication between users:
via references to shared digital artifacts. These artifacts resemble
boundary objects [2, 46, 65] that serve as mechanisms for commu-
nicating context and ideas online. In StackOverflow, for example,
issues are accompanied by segments of code that the user is writing.
Suggestions are then made as references to lines of code the user
shared. The boundary object (in this case, lines of code) captures the
user’s context and scaffolds the asynchronous communication with
others. Importantly, this context is identical for those contributing
to troubleshooting the issue and future users referencing the issue.
As a result, a larger group of current and future users benefit from
the knowledge gleaned in the interaction [77].

Hardware needs a robust boundary object to support the asyn-
chronous modes of communication necessary to scale maintenance
and troubleshooting infrastructure.We present SplatOverflow, a sys-
tem that enables asynchronous hardware troubleshooting through
a novel boundary object: a SplatOverflow scene. A SplatOverflow
scene captures the as-built hardware through a scan (a 3D Gaussian
Splat [41]) and renders as-designed details by aligning the scan to
a shared CAD model of the hardware.

The construction of a SplatOverflow scene presents distinct ad-
vantages to local users (who have the hardware in front of them),
remote maintainers, and future users who may encounter similar
hardware issues. Local users benefit from access to technical doc-
umentation linked to the CAD model and the ability to describe
issues on their hardware by pointing and clicking on parts rather
than knowing hardware-specific vocabulary. Remote maintainers
benefit from seeing the local user’s issue registered onto the famil-
iar CAD model and being able to freely move through the scene
to inspect the hardware in the local user’s environment. Finally,
future users benefit from being able to retrieve and replay solutions
to past issues without seeking out support. Instead, SplatOverflow
re-contextualizes instructions from a past issue by overlaying them
onto the current user’s environment. This ability to accommodate
multiple users and maintainers is essential to how SplatOverflow
can help support scaling the maintenance effort for hardware.

In this paper, we present the design of SplatOverflow, demon-
strate how it can be used to troubleshoot issues on different kinds of
hardware, and validate that non-expert users can use SplatOverflow
to troubleshoot hardware issues.

2 WALKTHROUGH
We demonstrate how a non-expert local end-user can troubleshoot
a complex issue on the Lumen v3 Pick-and-Place machine using
SplatOverflow. The Lumen is an automation machine designed to
assemble PCBs by picking up surface-mount electrical components

https://amritkwatra.com/research/splatoverflow
https://doi.org/10.1145/3706598.3714129
https://www.opulo.io/products/lumenpnp
https://help.prusa3d.com/tag/mk3s-2
https://www.oddlyspecificobjects.com/projects/openbook/


SplatOverflow: Asynchronous Hardware Troubleshooting CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 2: The components of SplatOverflow’s web and mobile interface. (a) The palette of gestures SplatOverflow offers for
selecting parts, guiding attention, and communicating actions. (b) The 3D Gaussian Splat of the hardware is aligned and
registered onto the CAD model. (c) The timeline captures the troubleshooting interaction as a sequence of instructions and
responses between users. (d) SplatOverflow’s mobile interface allows local users to scan their hardware using a smartphone.

with a vacuum nozzle and placing them on circuit boards. In this
scenario, the local user’s machine can not reliably pick up parts
with one of the two vacuum nozzles. They use SplatOverflow to
capture the issue they are facing and receive suggestions from a
remote maintainer. Figure 1 depicts a high-level visual illustration
of this process.

2.1 Creating a SplatOverflow Scene
The user opens SplatOverflow on their smartphone to capture the
issue they are facing. Figure 2(d) shows SplatOverflow’s capture
interface. They record a roughly one-minute-long video, filming
the Lumen from multiple angles. After recording, they upload the
video, and SplatOverflow generates a scene.

After two minutes, SplatOverflow completes generating a low-
resolution scene. This scene is generated using down-sampled video,
which yields a lower quality splat. However, this lower-resolution
scene allows the user to quickly begin using SplatOverflow. Af-
ter roughly four minutes from the original upload, SplatOverflow
finishes generating the full-resolution scene containing the user’s
Lumen registered onto its CAD model. SplatOverflow removes the
background regions of the splat by default to preserve the local
user’s privacy. What’s left is a splat of the user’s hardware and
parts of the immediate work surface on which it is placed. Figure
2(a-c) shows the scene as it is rendered in the browser.

2.2 Visually Querying Documentation and Past
Issues

First, the local user examines any technical documentation for Lu-
men to find a solution. They select SplatOverflow’s documentation
tool and click on the nozzle in the scene. Figure 3(a) shows how
SplatOverflow then displays sections of the technical documenta-
tion and past SplatOverflow issues referencing the nozzle assembly.

The user scrolls through the retrieved documentation but does not
find any suggestions about troubleshooting poor suction.

Next, the user sees a past issue that references a faulty nozzle.
They open the issue, and SplatOverflow re-contextualizes the in-
structions from that scene onto their hardware. Figure 3(b) shows
the solution to a past issue recontextualized in the local user’s Spla-
tOverflow scene. The user walks through the solution, which had to
do with fixing the O-rings that seal the vacuum nozzle. They check
that their O-rings are not dislodged and confirm this is not the
source of their problem. They then decide to capture more details
about the issue and ask for help.

Figure 3: (a) Using the CAD model to visually query techni-
cal documentation and past issues. When the user clicks on
the nozzle, SplatOverflow retrieves relevant sections from
the assembly documentation and past issues referencing the
part. Links to documentation are rendered in purple and
previewed in the timeline as an iframe. Past issues are ren-
dered in orange and can be recontextualized within the scene.
(b) The local user recontextualizes a previous issue referenc-
ing the nozzle’s poor suction; viewing the suggestions from
a prior overlaid onto their machine.



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kwatra et al.

2.3 Asking for Help
To share their issue with a remote maintainer, the local user adds a
description of the problem they are facing. They also add a video an-
notation of the nozzle failing to pick up a component. SplatOverflow
places the video into the scene to match the filming perspective, as
shown in Figure 4(a). The video describes the dynamic aspects of
the issue that cannot be captured in the scan of the workspace. The
local user then posts the issue and waits for a remote maintainer to
view it and offer suggestions.

2.4 Providing Guidance
After a few hours, the remote maintainer reviews the SplatOver-
flow issue and offers feedback. Figure 4(b) shows the maintainer
reviewing the issue and inspecting the nozzle assembly in the scene.
The maintainer cannot see any problems with the nozzle assembly
and suspects that the source of the issue may be the pneumatics
under Lumen’s staging plate. However, the underside of the staging
plate is not visible in the machine’s current orientation.

The maintainer directs the local user to reorient the machine by
manipulating the CAD model in SplatOverflow and requests that
they update the captured splat after moving it. Themove instruction
is visualized by animating the CADmodel to move from the original
position to a new target position. The request to update the splat
includes a QR code pointing the user to SplatOverflow’s mobile
capture interface for adding a splat to an existing scene. Figure 5
shows the instructions authored by the maintainer in the timeline
and how each is rendered in SplatOverflow.

2.5 Understanding Suggestions
The local user reviews the suggestions made by the remote main-
tainer. They see that the maintainer has asked them to move their
machine. Clicking the instructions in the SplatOverflow timeline
shows the user that they need to stand the machine on its back legs.
Figure 5(d) shows the user following the maintainer’s instructions
by moving the machine and updating their splat. The user scans the
QR code in the timeline event and captures a new splat showing
the underside of the staging plate. Once the splat is updated, the
scene contains two splats, with the machine in different orienta-
tions. Figure 6(a) shows the updated scene with the Lumen standing
upright and the pneumatics easily visible for the remote maintainer
to inspect. The splat captures the state of the wiring and routed
tubes that are not included in the machine’s CAD model.

Figure 4: (a) The local user’s video is placed as a floating
screen in the SplatOverflow scene and aligned to the same
perspective it was filmed in. (b) The remote maintainer re-
views the local user’s issue by inspecting the vacuum nozzle
in the splat and CAD model.

Figure 5: A reply from the remote maintainer asking the user
to re-orient the machine to a new position and then update
the scene with footage of the underside of the machine. (a)
The wireframe corresponding to the final position the ma-
chine should be in. (b) The timeline element explaining why
the movement needs to be made. When the local user clicks
this element, the CAD model will animate to show how the
machine should be moved. (c) The request for a new splat is
rendered for the local user. The QR code links them to the
mobile capture interface, where they can update the scene
the QR code links to. (d) The local user performing the ac-
tion specified by the maintainer and preparing to update the
splat.

2.6 Back and Forth Communication
The maintainer sees the updated splat and examines the pneumatics
under the staging plate. Using the splat, they inspect the routing of
tubes (not modeled in the CAD) and assess the condition of compo-
nents that may be degrading. After orbiting around the model, the
maintainer feels confident that the wiring is correct but notices two
concerns. First, the rubber bands holding the pumps have wholly
degraded, as shown in Figure 6(c). Second, the blue fitting on one of
the pneumatic fittings has come loose and will likely not provide an
adequate seal, as shown in Figure 6(d). Both are potential sources
of the issue, so the remote maintainer instructs the user to fix both.
They use SplatOverflow’s pointing gesture to attach comments to
the pneumatic fitting and the vacuum pumps. They instruct the

Figure 6: (a) The updated splat rendered in the browser. The
machine is now standing upright as themaintainer requested,
and the pneumatics in the staging plate are visible. (b) The
timeline is updated to indicate that a new splat has been
added, replacing the QR code with a success message. (c) A
close-up of the vacuum pumps dislodged with their positions
in the CAD model overlaid. (d) A close-up of the pneumatic
seal that the maintainer is concerned about.



SplatOverflow: Asynchronous Hardware Troubleshooting CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 7: The remote maintainer makes two sets of sugges-
tions. First, they indicate that based on the splat, one of the
fittings appears to be failing. They instruct the user on how
to test the fitting and offer a stop-gap solution if it has failed.
(a) The visualization indicates which part the remote main-
tainer references. (b) The timeline element with the relevant
instruction. Next, the remote maintainer notices that the
pumps have come loose and asks the local user to check if
the fitting is still secure. They also indicate that the local user
should replace the deteriorated rubber bands. (c) The visu-
alization overlaid onto the pump mounts. (d) The timeline
element with the relevant instruction.

local user to test if the tubes leaving the air pump are still securely
attached and to replace the rubber bands when they have the chance.
Next, the maintainer guides the user through testing if air escapes
the fitting when the pump is turned on. The maintainer asks the
user to place their finger on the seal and feel for air when the pump
is on. In case the seal leaks air, the maintainer suggests that the
local user apply some hot glue as a stop-gap solution while waiting
for a replacement part. Figure 7 shows how these instructions are
rendered in the timeline and within the scene.

The local user reviews the suggestion and performs the test as
described by the maintainer, as shown in Figure 8. When they turn
on the pump, they feel air escaping the fitting. They apply some
hot glue, and the vacuum pressure becomes more substantial. The
local user orders a replacement fitting and replies to the suggestion
indicating that a poor fitting was the culprit. Once the issue is
resolved, the timeline is indexed to all the parts referenced in the
back-and-forth exchange.

3 UTILITY OF SPLATOVERFLOW
This section outlines the capabilities made possible by SplatOver-
flow. We discuss the scenarios in which SplatOverflow addresses
the limitations of existing troubleshooting artifacts, highlight the
novel capabilities SplatOverflow enables, and outline the utility it
creates for different users.

3.1 Existing Troubleshooting Artifacts
Existing hardware troubleshooting workflows use a variety of arti-
facts to facilitate back-and-forth communication between parties,
each with its own drawbacks. We highlight how SplatOverflow

mitigates these drawbacks by complementing each kind of artifact
with additional information and context within a scene.

3.1.1 Text Posts. Text is commonly used to describe the physical
state of hardware, how it may be erroring, or what action must
be taken on the hardware. However, text descriptions can create
confusion if parties do not share a common vocabulary. This is es-
pecially true when non-expert users are troubleshooting hardware
with maintainers. Non-expert users may not know how to refer to
specific parts or which part a provided instruction refers to. Spla-
tOverflow explicitly links text to the referent parts from the CAD
model and visually highlights corresponding parts when the text
is selected. This preserves the flexibility of text while addressing
issues of referential uncertainty and ambiguity.

3.1.2 Annotated Images. Annotated images direct attention to a
specific area or part of the hardware. Moreover, annotations allow
maintainers to specify instructions through deictic references on the
local user’s hardware, e.g., tighten this bolt (where this bolt is circled
in an image). This lets local users reason about instructions without
changing contexts, as the annotation is authored by referencing
their hardware. However, image annotations can only reference
what the local user captured in the image. When the image does not
capture the appropriate details, maintainers must guide the user
without context cues from the local user’s hardware. SplatOverflow
extends the utility of image annotation for maintainers by allowing
them to annotate the scene from various arbitrary viewpoints.

3.1.3 Video Tutorials. Video tutorials can capture detailed multi-
step processes on hardware and show local users how to manipulate
their hardware through demonstration. Video tutorials contain a
large amount of detail, but can demand significant time and plan-
ning to be effective. As a result, video documentation is often used
for build instructions or set-up guides, the utility of which can be
pre-empted and planned for. However, troubleshooting is often
about problems that are hard to preempt [56]. Creating detailed
video tutorials for each of these issues as they arise is demanding
for maintainers. In contrast, impromptu and unedited videos can
be difficult for users to parse, leading to more miscommunication.
SplatOverflow improves the utility of impromptu video filmed by
non-expert users by situating the filming perspective of the video
within the scene.

3.2 Novel Capabilities
In addition to addressing some of the limitations of existing artifacts,
SplatOverflow enables novel capabilities that are not supported by
existing asynchronous hardware troubleshooting artifacts.

3.2.1 Indexing Issues. In SplatOverflow, resolved issues are indexed
in a database based on the parts they reference. Future users can
subsequently query this database by selecting the parts they are
experiencing issues with. This streamlines accessing the evolving
technical information related to the hardware. Similar to the pools
of technical knowledge created by the social network of copier
repair technicians described by Orr [56], the indexed corpus of
hardware issues created by SplatOverflow is a valuable reference
for other maintainers and future users [10].



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kwatra et al.

Figure 8: The local user examines the instructions left by the remote maintainer. (a) They test whether the tubing is still firmly
attached to the vacuum pump. They feel that it is, so they move to the next suggestion. (b) They test whether they can feel any
air escaping the fitting that the maintainer referenced in their suggestion. They can feel air leaking out. (c) The local user tries
the stop-gap solution of applying some hot glue to the fitting to improve the seal.

3.2.2 Independent Asynchronous Navigation. With SplatOverflow,
maintainers can independently navigate and author instructions
from perspectives and on parts not intentionally captured by the
local user. This adds flexibility and enables maintainers to inspect
and investigate the actual state of the local user’s hardware.

3.2.3 Issue Re-contextualization. By defining annotations in refer-
ence to CAD data, SplatOverflow can re-contextualize them into
new scenes containing the same hardware. This allows local users
to view suggestions from past issues overlaid onto their own hard-
ware and reduces the amount of context shifting needed to make
sense of instructions from past issues.

3.3 Utility to Users
SplatOverflow mediates an interaction between two kinds of users,
non-expert local end-users and expert remote maintainers. This sec-
tion underscores the utility to each type of user and the conditions
in which SplatOverflow is most beneficial.

3.3.1 For End-Users. SplatOverflow provides the most utility to
users whose expertise is not in the hardware itself but in what
they use it for. These users depend on the hardware for produc-
tivity but are not familiar with the intricacies of its design. As
such, maintenance and troubleshooting are simultaneously critical
and challenging tasks for these users to carry out. SplatOverflow
benefits these end-users in three ways: (1) By indexing past issues
and relevant technical information, SplatOverflow helps end-users
search for workflows to remedy issues they are facing. (2) By re-
contextualizing past issues, SplatOverflow allows end-users to rea-
son about and follow existing instructions within the context of
their own hardware. (3) By capturing the hardware context in a
scan, SplatOverflow allows end-users to seek help without know-
ing hardware-specific terminology. These benefits are accessed by
capturing a brief video of their hardware.

3.3.2 For Maintainers. As hardware develops, end-user mainte-
nance and troubleshooting is essential to support [25, 26, 35, 56].
This entails hardware designers, producers, or enthusiasts taking
on the role of maintainers to support the growing number of non-
expert end-users. SplatOverflow helps maintainers scale support
for hardware in three ways. (1) By creating an asynchronous trou-
bleshooting workflow, SplatOverflow allows maintainers to address

end-user issues at their own pace. (2) By registering an immersive
scan to a CADmodel, SplatOverflow allows maintainers to compare
the actual state of the hardware to its design without context shift-
ing across artifacts. (3) By indexing resolved issues, SplatOverflow
allows maintainers to inspect and share links to related issues and
relevant solutions.

These features help maintainers attend to individual issues. How-
ever, as more issues are addressed and indexed through SplatOver-
flow, the benefits to maintainers expand. For example, the main-
tainer’s effort in troubleshooting issues is multiplied when future
end-users can reference the solutionwithout seeking out help.More-
over, when multiple people are responsible for maintenance and
troubleshooting, they can reference the pool of advice offered by
others in the past while diagnosing new issues. As such, SplatOver-
flow supports maintainers in scaling hardware support.

4 RELATEDWORK
SplatOverflow builds on studies of hardware maintenance practices,
documentation systems, telepresence systems for expert support,
and spatial rendering techniques.

4.1 Hardware Maintenance Practice
SplatOverflow draws on the findings of Julian Orr’s ethnographic
work, which studies the sharing practices of Xerox repair techni-
cians in the field [56]. Orr’s work found that such troubleshooting
was improvisational and centered collaborative sensemaking be-
tween a technician, a client, and a machine [56]. This form of col-
laboration between different parties remains essential for effective
maintenance in modern, distributed communities of hardware users.
Dunn et al. [25] study one such distributed community: users of the
Jubilee motion platform, an open-source hardware project. They
find that encouraging community-driven maintenance enabled the
hardware to evolve to address design issues that would likely have
gone unaddressed otherwise [25]. Orr emphasizes how hardware
maintenance and troubleshooting practice cannot exhaustively be
preempted through documentation [56]. The practical nature of
hardware issues is that they are non-canonical and can only be ad-
dressed through pools of shared knowledge that continue to evolve
over time [10, 12].



SplatOverflow: Asynchronous Hardware Troubleshooting CHI ’25, April 26-May 1, 2025, Yokohama, Japan

More recently, Subbaraman and Peek [67] argue that mainte-
nance is a core component of using digital fabrication workflows in
3D printing communities. Like Orr, they caution against addressing
maintenance needs with fully automated procedures and instead
advocate for systems to be designed with maintenance in mind. This
resembles Jackson’s [37] concept of "broken world thinking," which
argues for foregrounding repair and maintenance practices when
considering technological progress. SplatOverflow revisits these
ideas to examine how such troubleshooting could be coordinated
asynchronously and how systems supporting hardware mainte-
nance can contribute workflows to pools of practical knowledge in
hardware communities.

4.2 Documentation Systems
Documentation for assembly instructions, usage guides, and main-
tenance tasks is integral to how users interact with and navigate
hardware. Such documentation is distinct from the design files
that define the hardware, but researchers have argued that they
contribute just as significantly to its success and adoption [11, 56].
To this end, HCI researchers have examined how hardware de-
signers can efficiently create documentation that is useful to end-
users. Mariscal-Melgar et al. [48] propose a semi-automated method
for generating and updating assembly documentation by leveraging
data from the hardware’s CAD model. This lets designers compile
new assembly instructions as designs change and keep documenta-
tion in sync with updates to the hardware. Milara et al. [50] propose
software tools for makers to create documentation as they work
on projects to ensure that essential design decisions, lessons from
failures, and the process narrative are not lost. Tran O’Leary et al.
[72] demonstrate how to create fabrication workflows in a manner
that foregrounds reproducibility by others. By interweaving digi-
tally controlled processes and physical interventions when defining
a fabrication workflow, Tandem guides users through the manual
steps critical to successfully reproducing a workflow [72].

Researchers have also explored how to make it easier for end-
users to explore existing technical documentation. For instance,
MagicNeRFLens [43] allows users to navigate a NeRF scene in vir-
tual reality, with additional documentation overlaid onto the virtual
scene. ARDW [17] is an augmented reality projection workbench
that overlays documentation onto a PCB to support debugging.
These projects present overlay and interaction techniques that ad-
dress challenges associated with context shifting between design,
documentation, and physical instantiation of hardware. This re-
search underscores that the successful documentation, distribution,
and reproduction of hardware and hardware workflows extends far
beyond sharing digital design files. However, these projects demon-
strate that there is significant value in incorporating connections
between digital design files, technical documentation, and physi-
cal instantiations of hardware. SplatOverflow builds on this work
by leveraging existing CAD model information to author, share,
visualize, and index hardware troubleshooting workflows.

4.3 Telepresence for Expert Support
In software development [5] and document editing [57], all collab-
orators typically access the same source code instead of compiled

or high-level artifacts. Direct access to the collaborative artifact
enables asynchronous support across the web [5].

HCI researchers examining synchronous support have proposed
multiple theories and developed speculative systems for how re-
mote experts can virtually occupy a shared task space with non-
expert users to provide guidance [14, 27, 29, 54]. Telepresence so-
lutions often try to establish a shared reference space, in which
participants can communicate with one another with deictic expres-
sions and gestures as they would if they were in person [24, 32, 38].
Such a reference space depends on both participants being able to
communicate within a common context. In a survey on augmented
reality systems for collocated experiences, Radu et al. [58] found
that collaborators need a shared environment to ground their com-
munication. Moreover, they find that collaborators need tools to
guide attention and give instructions by referencing objects in the
shared task space. Chastine et al. [16] develop a formal model of
such inter-referential awareness, providing a detailed framework
for how designers can develop referential systems.

Advances in augmented and virtual reality have led to work
studying how experts can remotely collaborate on physical tasks [75].
Researchers have proposed systems for ’mentoring’ tasks, where
one less experienced user seeks out guidance from an expert user
who views the scene remotely using mobile AR to bring the physi-
cal environment of users to remote collaboration [28, 29, 38]. Some
systems let experts view the perspective of remote users in VR and
communicate guidance through overlaid annotations [18, 71, 79].

Alternatively, systems also capture 3D reconstructions [36] and
allow remote collaborators to interact by combining with teleoper-
ated robots as in VRoxy [61] or by integrating live 360°video as Teo
et al. [69] demonstrated.

In these systems, the interaction is synchronous, and the guid-
ance provided is ephemeral, making it difficult for third parties to
replay and observe at a later time. Heimdall [39] is an alternative
approach to remote collaboration for prototyping electrical circuits
featuring a bespoke scanning system. Instructors navigate around
the prototype circuit and inspect its schematics through an instru-
mented breadboard. This enables instructors to remotely examine
and debug student circuits without relying on a student to navigate
around their breadboard. SplatOverflow marries insights from syn-
chronous remote expert support systems with the flexibility and
observability enabled by asynchronous troubleshooting.

4.4 Scanning and Spatial Rendering
To troubleshoot hardware issues, SplatOverflowmust be able to cap-
ture a local user’s hardware, ideally without specialized equipment.
To do this, it leverages research in scanning and scene represen-
tation techniques. Recently, there has been substantial progress
in novel-view synthesis techniques that can construct a 3D scene
from collections of posed 2D images [41, 51, 53]. These approaches
build on COLMAP, a structure-from-motion (SfM) tool that con-
structs a coarse point cloud and estimates camera pose from image
frames [62–64]. These tools and techniques allow SplatOverflow
users to capture high-fidelity scans using commodity smartphone
cameras they likely already own.

Although SplatOverflow is generally agnostic to scanning tech-
nology, our implementation leverages 3D Gaussian Splatting [41]



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kwatra et al.

to capture a workspace due to its fast training time and real-time
rendering capabilities. A splat represents the scene as a collection
of 3D Gaussian distributions and can be rendered in real-time us-
ing traditional graphics pipelines. Notably, there is considerable
progress in reducing training times and improving the visual def-
inition of Gaussian splats [33, 44, 76]. These methods enable fast
3D scene reconstruction with accurate geometric information from
limited data, lowering the overhead of capturing a scene for users.

5 SPLATOVERFLOW
This section describes the design of SplatOverflow. We discuss the
constituent artifacts that comprise a SplatOverflow scene, including
the benefits and shortcomings of each artifact. Then, we explain
the construction of the SplatOverflow scenes, how it facilitates
asynchronous communication using gestures, and how data from
issues can be indexed and retrieved using a CAD model.

5.1 Constituent Artifacts
At a minimum, SplatOverflow requires a scan of the hardware and
a CAD model that describes the hardware’s design. SplatOverflow
combines these artifacts to construct a single boundary object that
amplifies the benefits and minimizes the drawbacks of each con-
stituent artifact, as well as addressing the limitations of traditional
asynchronous troubleshooting artifacts described in Section 3.

5.1.1 CAD Models. CAD models can precisely and accurately de-
scribe the design of hardware. They also offer various viewing,
selection, and manipulation tools to help make sense of hardware
issues. For example, CAD models allow designers to inspect inter-
nal mechanisms that are not visible in the assembled hardware.
This ability to peer through parts can help designers reason about
mechanical issues without taking apart the hardware. These models
can also be the basis of generating visual assembly instructions that
are easy for users to follow [4, 48].

The primary drawback of CAD models is that they do not reflect
the host of ways hardware can err. This is because CAD models
capture the hardware in an idealized state. In practice, however,
hardware (especially malfunctioning hardware) does not perfectly
resemble the CAD model. This is additionally problematic as some
deviations from the CAD model are perfectly acceptable, while
others can introduce errors. CAD models offer the tools and inter-
actions to visualize, explore, and reason about a hardware design
but do not capture the multitude of ways that each hardware in-
stance is unique.

5.1.2 Scans. Scans, however, can capture the unique details of
hardware instances. Dedicated mobile scanners using stereo vision,
structured light, or novel-view synthesis techniques can accurately
capture the geometry of hardware at different scales. This data can
be used to measure and inspect hardware as it has been built and
assembled, which is essential when diagnosing what may be going
wrong with the hardware.

The drawbacks of relying on scans are that they only capture
visible geometry and do not know the semantic meaning of what
they are capturing. Most scanning methods cannot safely penetrate
materials to scan internal components, so scans capture only the

outer shell of the hardware geometry. Moreover, as scanning meth-
ods often do not know what they are scanning, isolating different
parts in an assembly is challenging. These drawbacks are related in
that they highlight how references are hard to anchor to scan data.

5.2 A SplatOverflow Scene
SplatOverflow scenes comprise two essential artifacts: a scan of
the user’s workspace aligned and registered onto a CAD model
of the hardware. Our implementation generates the scans using
3D Gaussian Splatting [41]. We chose Gaussian Splatting as it can
generate high-quality scans rapidly using only user-captured video
data as input. We use open-source CAD models saved as .glb files
with additional data to capture the assembly constraints in the
model. The 3D Gaussian Splat (referred to here as splat) is aligned
and registered to the CAD model using ArUco markers that are
placed on the hardware at known locations [52, 55].

The aligned artifacts support selecting and manipulating individ-
ual components on the hardware segmented using the CAD model
and inspecting the physical state of the hardware as captured in
the splat. SplatOverflow scenes are implemented in WebGL and
run in the browser. As a result, they can be shared with anyone
online, requiring no installation or OS-specific set-up. Scenes can be
viewed on personal computers, mobile devices, and virtual reality
headsets that support WebXR.

5.2.1 Scanning aWorkspace. Scanning the hardware and surround-
ing workspace captures the as-built state of the hardware. This in-
cludes modifications, job configurations, or parts not traditionally
included in CAD, such as wires or cables.

The input to the scan is a video of the user’s workspace captured
through SplatOverflow’s mobile interface, as described in Section
2. The video is then sampled in two passes. First, at a fixed frame
rate (4 FPS in our examples) and then again to more densely sample
frames containing ArUco tags to generate a set of images. Spla-
tOverflow feeds this set of images to COLMAP [62, 63] to generate
an intermediate Structure-from-Motion model of the local users’
workspace. SplatOverflow uses this model to generate a splat of
the recorded scene.

SplatOverflow takes roughly four minutes to generate a 3D
Gaussian Splat from a video filmed in 1080p resolution and roughly
two minutes from a 360p video. Generating the splat is the pri-
mary bottleneck for developing a SplatOverflow scene. Processing
times could be reduced by using more efficient splat generation
techniques from recent research, such as MVSGaussian [44].

5.2.2 Registering a Gaussian Splat to a 3D CAD Model. SplatOver-
flow automatically aligns and registers a splat of the local user’s
hardware to the 3D CAD model in two steps using ArUco tags
placed in known locations on the hardware [52]. SplatOverflow
first uses the SfMmodel generated by COLMAP [62, 63] to compute
a three-dimensional coordinate of every corner of each ArUco tag
[49]. These corners are used to rescale the splat to be the same size
as the CAD model. Next, SplatOverflow uses Arun’s method [6]
to compute a rigid transformation going from corners in the SfM
model’s coordinate space to CAD coordinate space. If there are no
moving parts in the CAD assembly, this transformation yields an
aligned and registered splat.



SplatOverflow: Asynchronous Hardware Troubleshooting CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 9: (a) An unaltered 3D Gaussian Splat as returned by
our system. (b) A pruned 3DGaussian splat is used to preserve
the user’s privacy and not share background details with a
community of users.

However, hardware will often have moving parts. These degrees
of freedom mean that the hardware can be in one of many states,
which are unlikely to match the static state of the CAD model.
To address this, SplatOverflow recommends placing at least one
constraint tag on each degree of freedom and one grounding tag
on a stationary part of the hardware. When a CAD model is being
prepared, the model’s maintainer indicates which tag ID maps to
which degree of freedom. With this precondition, SplatOverflow
uses the same detection method to find the centers of each con-
straint tag and computes an offset from the grounding tag to the
constraint tag. This offset is then used to calculate a transformation
that automatically aligns the CAD component to the position of
the part in real life. Following these two steps, the hardware parts
are aligned to their corresponding parts in the CAD model.

The tags used for alignment, registration, and constraint satisfac-
tion can be applied manually onto existing hardware, placed during
manufacturing, or designed into the hardware [21, 23]. In all of our
examples, tags were manually placed onto existing hardware.

5.2.3 Post Processing a Splat Using Features of the CAD Model.
Once the splat has been aligned and registered, SplatOverflow lever-
ages information from the CAD model to post-process the splat.
SplatOverflow uses a signed distance function from points in the
splat to CAD meshes to identify what region of the splat contains
relevant information about the hardware. By default, SplatOver-
flow uses this to remove the background details from a scene to
preserve the local user’s privacy and share only parts of the splat
that correspond to the hardware or the workspace the hardware
rests on. Figure 9 shows a splat as it is generated and the same splat
after SplatOverflow’s privacy filter.

5.2.4 Localizing Video Feeds. SplatOverflow allows users to cap-
ture dynamic details of their issue as short video clips and aligns
these clips in the SplatOverflow scene using an estimate of the cam-
era pose at each frame. This allows remote maintainers to review
the perspective from which a video was shot as well as the content
of the video. Figure 4 shows the video feed in the SplatOverflow
scene. SplatOverflow estimates the pose of a video feed by localizing
individual frames into an existing COLMAP model [62, 63].

5.3 Interacting with a SplatOverflow Scene
SplatOverflow offers tools to explore a scene, communicate actions,
and facilitate discussion. This section describes each of these tools
and the interactions they support.

Figure 10: (a) A sub-assembly on the Lumen v3 with occluded
components visible to the user. (b) A gesture indicating that
the user tightens a bolt on the sub-assembly. (c) Querying
technical documentation referencing a specific sub-assembly.

5.3.1 Selection and View Control. SplatOverflow allows users to
select parts and navigate subassemblies of the CAD model to com-
pare the as-designed to the as-built and make sense of occluded
parts of the hardware not visible in the splat. When a part from
the CAD model is selected, it is rendered to the user with a yellow
wireframe. This allows the user to compare details from the splat
to the geometry of an individual CAD component. Moreover, the
visibility of CAD parts in a subassembly can be controlled, allow-
ing users to "peer through" sub-assemblies and visualize internal
components that are not visible, as shown in Figure 10(a).

Remote users can use SplatOverflow scenes to independently
explore novel viewpoints within the local user’s environment. This
is enabled by the splat component of a SplatOverflow scene. Once
the splat is aligned onto the CAD model, it occupies the same
coordinate space and can be navigated with the same controls as a
CAD environment.

5.3.2 Gestures. Users communicate in SplatOverflow via gestures.
A gesture is an instruction or request that references an element in
the SplatOverflow scene. Gestures are organized chronologically in
an interactive timeline. The timeline elements trigger visualizations
of the gesture in the SplatOverflow scene and house user discussions
about the gesture.

Maintainers can use gestures to request more information from
the user. This can be done by requesting video annotations or up-
dated splats using the request gesture. When a request gesture is
authored, a timeline element appears with a QR code. The QR code
lets the user populate the request via SplatOverflow’s mobile inter-
face and appends the requested information to the scene. Figure 5
shows an example of the request gesture.

Gestures can also communicate instructions or actions a user
should take on their hardware. These gestures are all anchored to
parts in the CAD model, which are highlighted whenever a ges-
ture is selected in the timeline alongside each gesture’s animation.
SpaltOverflow’s pointing gestures indicate where on a part in CAD
a user should inspect or attend to. When selected, the referenced
CAD part is highlighted, and the viewport shifts to re-orient the
local user. SplatOverflow’s move gesture indicates to local users
how parts should be manipulated. When selected, the referenced
CAD part animates to tween between its original position and the
final position defined by the remote maintainer. Finally, SplatOver-
flow includes a set of action gestures for common troubleshooting



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kwatra et al.

operations, such as tightening or loosening specific bolts and prob-
ing particular pads on a PCB. When selected, the gestures overlay
arrows onto the scene to visualize the operation.

5.3.3 Timeline Elements and Discussions. Timeline elements refer
to gestures authored by different users. The timeline element con-
tains additional text to clarify what a gesture entails. Users can
ask for clarification or follow up on a gesture by replying to the
corresponding element in the timeline. This facilitates the asyn-
chronous back-and-forth communication to help make sense of a
given gesture.

5.4 Indexing Data to a CAD Model
SplatOverflow uses the CAD model to index and query data. This
includes technical documentation referencing parts in the CAD
model and past SplatOverflow issues. For existing technical docu-
mentation, SplatOverflow renders web pages that reference CAD
components, as illustrated in Figure 10(c). Similarly, SplatOverflow
can query the history of past issues to retrieve troubleshooting
instructions that reference specific CAD components. This ability
to feed structured data from troubleshooting issues into a database
that can be queried allows SplatOverflow to become increasingly
useful to hardware communities over time.

6 IMPLEMENTATION
Our implementation of SplatOverflow is divided into four sections:
Scene Capture, Scene Generation, the SplatOverflow front-end, and
the back-end Coordination Server.

The mobile capture interface runs in a browser and is written
in JavaScript using the MediaStream Recording API. It is designed
to be accessible from modern smartphone browsers. On the server,
SplatOverflow uses a C++ 3D Gaussian Splatting implementation
by MrNeRF [41] and the COLMAP package for Structure-from-
Motion (SfM) to generate the scene. To align a CAD model to
the scan, SplatOverflow uses the method from ArUco SFM Scale
Adjustment [49] and an implementation of Arun’s method [6].

The back-end coordination server is a Flask application and SQL
database that manages the data associated with a SplatOverflow
scene. The SfM [62] and Gaussian Splatting [41] pipelines run on a
PC equipped with an Intel i7-14700K, 32GB RAM DDR5 and Nvidia
4080S GPU with 24GB of VRAM. On average, a 60-second video
takes 122 seconds to generate a scene trained on 360p footage and
250 seconds to generate a scene trained on 1080p footage.

We use Mark Kellogg’s 3D Gaussian Splatting Renderer [40] to
render the 3D Gaussian Splats and develop the interface elements
in Javascript, using the Three.js library [20].

7 DEMONSTRATIVE EXAMPLES
Figure 11 demonstrates the utility of SplatOverflow in three work-
flows that extend beyond troubleshooting of machines: (a) verifying
assembly of the PCB in the Open Book e-reader by Oddly Specific
Objects, (b) performing routine maintenance on the Prusa MK3S 3D
printer, and (c) following disassembly instructions for a flat-pack
bookshelf using the Billy bookshelf by IKEA. These workflows in-
tend to capture a variety of scales, applications, and user roles that
SplatOverflow can support.

7.1 Verifying the Correct Assembly of the Open
Book E-Reader

SplatOverflow is compatible with non-mechanical CAD designs.
The Open Book [15] e-reader is an open-source e-reader that con-
sumers assemble on their own, with the goal of demystifying con-
sumer electronics. Successful assembly is a function of correct and
precise soldering. In this example, we show how the maintainer of
the Open Book can help users verify correct assembly and track
down potential errors that inhibit successful booting using a work-
flow authored and shared in SplatOverflow. Specifically, the main-
tainer defines a set of probe points to be checked with a multimeter
that can indicate the exact probe points on the PCB the user must
test, along with the expected outcome of each test.

The local user starts by creating a SplatOverflow scene to follow
the assembly verification guide created by a maintainer. The Open
Book has a 20mm tag that aligns the CAD model of the PCB gener-
ated from KiCAD [68]. In this example, we applied the tag to the
PCB, but in practice, such a tag could be printed as part of the PCB’s
silkscreen. Once the SplatOverflow scene is generated, the local
user loads the instructions authored by the maintainer into their
scene and sees them projected onto their hardware. Figure 11(a)
shows the instructions rendered onto their PCB.

The local user references verification instructions loaded into
their SplatOverflow scene. As shown in Figure 11(a), instructions
are overlaid onto the pins the user must probe. The user follows
probing instructions to check for continuity, voltage, and resistance
at points across the PCB. The guide authored in a SplatOverflow
scene can be recontextualized to each local user’s hardware. This
contrasts most online guides, which are rendered using virtual
objects or images and videos of a different hardware instance.

7.2 Sharing and Updating Routine Maintenance
Workflows on the Prusa MK3S 3D Printer

Asynchronous sharing enables feedback loops, leading to improved
workflows. The Prusa MK3S 3D Printer is a popular personal fab-
rication machine targetting hobbyists. Like all 3D printers and
fabrication machines, the printer requires routine maintenance to
ensure proper function. A typical maintenance task is tightening
the belts that drive two axes of motion. Poorly tightened belts can
lead to failed prints or unintended artifacts in otherwise successful
prints. Learning to carry out such tasks is essential to owning and
operating personal fabrication machines [66]. We illustrate how
SplatOverflow can be used to share maintenance workflows and
how end-user feedback can improve the quality of such workflows.

A local user sees ghosting artifacts on their print and is pointed
to a SplatOverflow issue explaining how to adjust the machine’s
belt tension. Figure 11(b) shows the workflow rendered in the local
user’s workspace. The user follows the instructions but is unsure
how much to tighten the belts. They leave a comment asking the
maintainer how they know when to stop tightening the belt. The
maintainer realizes that the instruction is underspecified and shares
an online resource that uses a microphone to validate belt tension.
Here, we show a simple example of how the open and asynchronous
nature of SplatOverflow issues allows communities of users to
iterate on workflows together.



SplatOverflow: Asynchronous Hardware Troubleshooting CHI ’25, April 26-May 1, 2025, Yokohama, Japan

Figure 11: SplatOverflow functions with hardware of varying scales. (a) Assembly verification for Printed Circuit Boards.
(b) Community authored troubleshooting best practices. (c) Disassembly process for mass-produced flatpack furniture.

7.3 Guided Disassembly of the Billy Bookshelf
SplatOverflow enhances static assemblies like furniture by adding
a sticker. The Billy Bookshelf is a mass-produced piece of flat-pack
furniture. IKEA provides DIY assembly through easy-to-understand
assembly instructions. We demonstrate how SplatOverflow can
guide users through step-by-step disassembly.

The Billy is roughly 80 inches tall, making it difficult to scan from
all angles; particularly from the top down. The local user places
an ArUco marker on the back-right corner of the bookshelf and
scans the Billy. As the bookshelf is upright during the scan, there is
a noticeable degradation of quality above the bookshelf. However,
because SplatOverflow aligns the CAD model in the scene, users
can infer geometry while still receiving context cues from the scan.

The disassembly workflow is reasonably straightforward. The
maintainer (in this case, IKEA) provides a SplatOverflow scene
with the correct sequence of opening the cam locks that hold this
bookshelf together. Users follow these instructions and sequentially
disassemble the shelf. For more complex disassembly, users can
update the splats to receive new instructions, similar to the scene
update described in the walkthrough. This example demonstrates
how SplatOverflow can enable new collaborative workflows for
mass-produced hardware.

8 EVALUATION
We conducted a usability study with twelve participants to validate
whether end-users can use SplatOverflow to troubleshoot hardware
issues. The hardware used in the study was a popular 3D printer:
the Prusa MK3S.

8.1 Study Design
Our study is divided into two parts. First, we examine whether
non-expert users can capture their hardware to create a SplatOver-
flow scene. Second, we present them with two common issues
experienced by users of this hardware. These issues were sourced

based on the prevalence of online guides addressing them. We ex-
amine whether users can successfully follow instructions through
a SplatOverflow scene and assess the usability of our system.

8.2 Part 1: Generating a SplatOverflow Scene
Participants were provided a smartphone running SplatOverflow’s
capture interface as a web app. They were instructed to create a
splat of the 3D printer in front of them by recording a video of
the hardware from a variety of angles. All participants were able
to generate a splat from their recording, and 83.3% of participants
could successfully generate a SplatOverflow scene. For 33.3% of
participants, the system generated a SplatOverflow scene, but the
user-captured video lacked enough information to resolve hard-
ware constraints—specifically, aligning the degrees of freedom in
the hardware. Figure 12 shows examples of scenes generated by
participants. After generating the scene, we demonstrated how
participants could navigate our interface. They then completed a
survey about the usability of the scanning interface.

We use the participant-generated SplatOverflow scene in part
2 of our study. If the user’s input failed to generate a scene, they
were given a placeholder scene featuring the same hardware.

8.3 Part 2: Following Instructions in
SplatOverflow

In part 2, we presented the participant with two hardware issues
in random order and asked them to follow instructions rendered
in SplatOverflow to remedy the issues. The issues were: correcting
the belt tension in the printer’s x-axis (issue 1) and clearing a jam
in the extruder (issue 2). These issues were selected as they are
commonly occurring issues with this printer and have a variety
of online tutorials dedicated to them [1, 60]. The order of the is-
sues was randomized, and participants were asked to follow the
instructions to the best of their ability. For both issues, 91.7% of
participants could successfully follow instructions in SplatOverflow
to remedy the problem. Following each issue, we asked participants



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kwatra et al.

Figure 12: We conducted a usability study with 12 participants to evaluate whether they could generate a SplatOverflow scene
and successfully fix the issue. (a) Sample scenes generated by study participants. (b) A table showing each participant’s outcomes
in our study and the length of the recording used to generate the scene.

Figure 13: Participants’ responses to post-task questions
regarding their confidence while troubleshooting the two
isses. (a) Shows responses for Issue 1: adjusting belt tension.
(b) Shows responses for Issue 2: clearing an extruder jam.

to answer questions about their experience using SplatOverflow
to troubleshoot the issue. Figure 13 shows participants’ responses
on a Likert scale. Overall, users found that instructions rendered
in SplatOverflow were easy to follow and well-aligned with the
scanned hardware.

8.4 System Usability
After completing both parts of the study, participants evaluated the
overall usability of the system through a survey. We use the System
Usability Scale [13] and our system scored 86.25 / 100.

In addition, participants shared insights on how SplatOverflow
could be expanded to assist with troubleshooting in other contexts.
Participants felt that SplatOverflow would be helpful when facing
issues with unfamiliar hardware: "It is very helpful for me to use
and repair, especially when I’m not familiar with the machine itself"
(Participant 1). They also compared our system to existing methods
of troubleshooting: "I was working with robots (Turtlebot 4 setup).
Their documentation was too wordy, and it was hard to locate the
solution from that. So, we had to post GitHub issues and wait for a
response. It was sometime hard to explain them my specific problem.
Of course, if there was a system that I could have scanned my problem
and send them, it would have saved a lot of time" (Participant 3).

9 DISCUSSION
We discuss the implementation and application of SplatOverflow.
We first highlight aspects of the experience for different users and
then discuss technical features and future implementation.

9.1 SplatOverflow Users
9.1.1 Hardware Support for End-Users. SplatOverflow offers a new
way to collaborate on hardware. For workflows such as assembly,
routine maintenance, operating instructions, and troubleshooting,
SplatOverflow provides a novel way for users to receive guidance
from collaborators or retrieve associated documentation. By con-
necting physical instances of hardware to their CAD model and
associated documentation, end-users can inspect the ’source’ of the
hardware they are working with. This direct connection between
the physical part and documentation provides a more direct way
to navigate documentation that can exist in disparate locations.

Moreover, users can seek help through SplatOverflow, analo-
gous to asking for help in a forum. In software, platforms such as
GitHub [19] and StackOverflow [5] have been essential for help-
ing users learn about new software, troubleshoot issues, and scale
maintenance efforts to support distributed projects. By supporting
asynchronous communication about physical things, SplatOverflow
presents a similar workflow for hardware.

9.1.2 Hardware Support for Maintainers. Through SplatOverflow,
remote maintainers gain insight into the local user’s workspace
and the actual state of the hardware they are working on. Moreover,
maintainers do not have to rely on the local user to move a camera
precisely to inspect hardware. They can examine novel viewpoints
independently and use gestures to guide the local user to move to
the exact location.

This is a longstanding problem in collaborative workflows previ-
ously addressed with teleoperated robotic systems [39, 61]. Spla-
tOverflow achieves a similar outcome without the need for bespoke



SplatOverflow: Asynchronous Hardware Troubleshooting CHI ’25, April 26-May 1, 2025, Yokohama, Japan

hardware or additional instrumentation of a space. This, paired
with SplatOverflow’s web-based interface, expands the number of
users who can access remote support.

9.1.3 Reducing Barriers to Distribute Hardware. Tech support is a
core component of a viable hardware product but requires signifi-
cant effort for hardware companies to scale. Asynchronous support
infrastructure could reduce this effort by (a) providing communities
of users the means of querying past issues and examining solutions
and (b) allowing maintainers to provide support in an open format
without coordinating with end-users. This approach would sup-
port maintainers, producers, and hardware communities in scaling
technical support for users. To better evaluate this, we plan to en-
gage with open-source hardware producers and community maker
spaces to study longer-term deployments of SplatOverflow.

9.2 Extending Multi-media Workflows
Many tasks start with the assumption that the user is seeking
guidance and has a screen available in front of them. For example,
tools such as Interactive HTML BOM [34] allow users to correlate
components and their placements visually. The tool assumes users
will be using a screen to aid in assembly and debugging.

Similarly, YouTube and other video hosting platforms [9, 42,
73] are used extensively for step-by-step instructions in cooking,
assembly, and DIY Home repair. Documentation often has directly
embedded video [31, p. 121] and manufacturers such as IKEA [74]
produced videos to demonstrate operations clearly. While these
videos can be valuable resources, they are often expensive and
time-consuming to create. As a result, video is not always the ideal
choice for end-users to articulate issues or seek guidance.

Our work extends multi-media hardware support by allowing
users to rapidly author and share workflows for acting upon hard-
ware amongst themselves. With SplatOverflow, bidirectional com-
munication becomes easier instead of being solely broadcast from
experts or designers.

9.3 Cross-Referencing, Inspectability and
Information Sharing

SplatOverflow enables the ability to link across hardware and data.
This interaction mode is similar to View Source or Right Click to
Inspect Element that is available in browsers [78]. These features
were originally intended to help developers debug their own soft-
ware [45, 59]. However, they rapidly became tools for education and
exploration where “Every single web page you visited contained
the code showing you how it was created. The entire internet be-
came a library of how-to guides on programming” [70]. While we
leave the specific application of SplatOverflow in education con-
texts to future work, we believe that the ability to inspect, discuss,
and cross-reference physical and digital representations is vital to
sharing hardware designs and know-how. SplatOverflow provides a
set of primitives to support a known challenge for commons-based
peer production [7, 8] of physical systems [66], primarily that of
scalable instruction, support, and collaboration.

9.4 Technical Features
After implementing and testing SplatOverflow in a variety of con-
texts, we distilled a set of features to support it as we move towards
a full deployment of the system.

9.4.1 Guided Splat Capture. In our evaluation, some user captures
failed due to insufficient data to align the model. Given that proper
alignment and registration are essential for creating a successful
SplatOverflow scene, we plan to improve feedback in SplatOver-
flow’s mobile interface. The capture process could also be enhanced
by allowing users to specify the hardware they intend to scan. With
this information, the interface can guide users through capturing
enough frames to align the splat to the CAD model and indicate
which grounding and constraint tags require more footage.

9.4.2 Automatically Preparing CADModels. Tomake a CADmodel
compatible with SplatOverflow, the producers of the hardware need
to determine optimal locations to place the grounding and constraint
tags. The choice of location for these tags can affect how difficult
it is to align the captured splat to the CAD model. To support
onboarding hardware into SplatOverflow, we plan to automate the
tag placement process to optimize for visibility using a process
similar to BrightMarker [22].

9.4.3 IP of CADmodels. In some cases, CADmodels are highly pro-
tected by hardware maintainers, who may not want to share these
files with users. Currently, SplatOverflow uses a mesh representa-
tion of the CAD model and only requires information about the
position of alignment tags on the model. For maintainers concerned
about sharing mesh models, we plan to build an import pipeline
that strips only the relevant data for our workflows without saving
the actual CAD model on our server.

9.4.4 Mixed Reality. SplatOverflow is built in the browser and
could be extended to fully immersive Augmented and Virtual Re-
ality contexts by leveraging the WebXR Devices API [47]. While
our implementation focuses on screen-based interaction, future
work may examine how authoring SplatOverflow gestures could
be extended to mixed reality.

10 LIMITATIONS
This section details some limitations we have observed over the
course of designing and implementing SplatOverflow.

10.1 Acquiring CAD Models
SplatOverflow requires access to the hardware’s CAD model to
populate the scene. For SplatOverflow scenes to be useful, the CAD
models must also be complete. CAD models like this can be chal-
lenging to obtain outside of open-source hardware projects, which
can limit the adoption of SplatOverflow. Moreover, even when CAD
files are available, the structure of sub-assemblies, parts, and com-
ponents is not standardized. As a result, preparing CAD files for
use in SplatOverflow can require coercing the structure of the CAD
assembly into a compatible shape.



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kwatra et al.

10.2 Structure References in Technical
Documentation

Another limitation of SplatOverflow lies in its ability to reference a
corpus of existing technical documentation. With the Lumen v3,
each technical documentation section contained links referencing
the related parts. This greatly simplified populating the documenta-
tion interface with instructions to search through. However, not all
hardware will share technical documentation in the same structured
fields as Opulo does with Lumen v3. As a result, maintainers must
post-process existing technical documentation to add the relevant
structured data indicating which CAD components are referenced.

10.3 Errors in Tag Placement
In all our examples, grounding and constraint tags were manually
placed on the hardware. In doing so, we realized that while get-
ting precisely aligned CAD models using manually placed tags
is possible, the process is also prone to errors. Specifically, if a
tag is misplaced, the amount SplatOverflow’s alignment deviates
increases proportionate to the distance from the tag. As a result,
placing SplatOverflow tags manually is a challenging, error-prone
task and may not be approachable for novice users.

11 CONCLUSION
We introduced SplatOverflow, a novel workflow for asynchronous
hardware troubleshooting. SplatOverflow constructs a boundary
object that can capture the physical details of a user’s hardware and
communicate instructions as actions on their hardware. We demon-
strate SplatOverflow through a series of examples with different
kinds of hardware. We show how these workflows can support com-
plex troubleshooting workflows that require multiple exchanges
between users and physical manipulation of the hardware. More-
over, we illustrate how a SplatOverflow scene can index technical
knowledge about hardware to the CAD model. As a result, local
users searching multiple disparate sources for relevant information
can now access documentation and past solutions directly through
the physical hardware.

We plan to distribute and deploy SplatOverflow with a broader
user base through hardware maintainers and study our proposed
forms of collaboration in the wild. Besides direct utility for hard-
ware users and maintainers, we believe tools for communicating
about physical hardware can reduce barriers to entry for smaller
producers distributing niche hardware and supporting community
development amongst their users.

ACKNOWLEDGMENTS
We thank the Digital Life Initiative at Cornell Tech for supporting
this work through a doctoral fellowship. We thank the Bowers
CIS Undergraduate Research Experience for supporting this work
through their summer research program. We thank Roy Zunder
for helping review this manuscript. Finally, we thank Joey Castillo,
Frank Bu, and Stephen Hawes for participating in preliminary dis-
cussions that helped motivate this work.

REFERENCES
[1] Prusa 3D. 2023. Adjusting the belt tension on the Original Prusa MK4 - Belt

Tuner App. https://youtu.be/oeq2MVxE_H8?feature=shared&t=56

[2] Mark S. Ackerman, Juri Dachtera, Volkmar Pipek, and Volker Wulf. 2013. Shar-
ing Knowledge and Expertise: The CSCW View of Knowledge Management.
Computer Supported Cooperative Work (CSCW) 22, 4-6 (Aug. 2013), 531–573.
https://doi.org/10.1007/s10606-013-9192-8

[3] John R Ackermann. 2008. Toward Open Source Hardware. (2008).
[4] Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff Klingner,

Pat Hanrahan, and Barbara Tversky. 2003. Designing Effective Step-by-Step
Assembly Instructions. ACM Trans. Graph. 22, 3 (jul 2003), 828–837. https:
//doi.org/10.1145/882262.882352

[5] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. 2012.
Discovering value from community activity on focused question answering
sites: a case study of stack overflow. In Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, Beijing
China, 850–858. https://doi.org/10.1145/2339530.2339665

[6] K. S. Arun, T. S. Huang, and S. D. Blostein. 1987. Least-Squares Fitting of Two
3-D Point Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-9, 5 (Sept. 1987), 698–700. https://doi.org/10.1109/TPAMI.1987.4767965

[7] Yochai Benkler. 2002. Coase’s penguin, or, linux and" the nature of the firm". Yale
law journal (2002), 369–446.

[8] Yochai Benkler and Helen Nissenbaum. 2006. Commons-based peer production
and virtue. Journal of political philosophy 14, 4 (2006).

[9] Aditi Bhatia. 2018. Interdiscursive performance in digital professions: The case
of YouTube tutorials. Journal of Pragmatics 124 (2018), 106–120.

[10] Daniel G. Bobrow and Jack Whalen. 2002. Community Knowledge Sharing in
Practice: The Eureka Story. Reflections: The SoL Journal 4, 2 (Dec. 2002), 47–59.
https://doi.org/10.1162/152417302762251336

[11] Jérémy Bonvoisin, Robert Mies, Jean-François Boujut, and Rainer Stark. 2017.
What is the “Source” of Open Source Hardware? Journal of Open Hardware 1, 1
(Sept. 2017), 5. https://doi.org/10.5334/joh.7

[12] Stewart Brand. 2025. Maintenance: Of everything: Part one. Stripe Press.
[13] John Brooke. [n. d.]. SUS - A quick and dirty usability scale. ([n. d.]).
[14] William Buxton. 1992. Telepresence: Integrating shared task and person spaces.

In Proceedings of graphics interface, Vol. 92. Canadian Information Processing
Society Toronto, Canada, 123–129.

[15] Joey Castillo. [n. d.]. Open Book Project. https://github.com/joeycastillo/The-
Open-Book/tree/reboot#state-of-the-book

[16] Jeffrey W. Chastine, Ying Zhu, and Jon A. Preston. 2006. A Framework for
Inter-referential Awareness in Collaborative Environments. In 2006 International
Conference on Collaborative Computing: Networking, Applications andWorksharing.
1–5. https://doi.org/10.1109/COLCOM.2006.361859

[17] Ishan Chatterjee, Tadeusz Pforte, Aspen Tng, Farshid Salemi Parizi, Chaoran
Chen, and Shwetak Patel. 2022. ARDW: An Augmented Reality Workbench
for Printed Circuit Board Debugging. In Proceedings of the 35th Annual ACM
Symposium on User Interface Software and Technology. ACM, Bend OR USA, 1–16.
https://doi.org/10.1145/3526113.3545684

[18] Lei Chen, Yilin Liu, Yue Li, Lingyun Yu, BoYu Gao, Maurizio Caon, Yong Yue,
and Hai-Ning Liang. 2021. Effect of Visual Cues on Pointing Tasks in Co-Located
Augmented Reality Collaboration. In Proceedings of the 2021 ACM Symposium on
Spatial User Interaction (Virtual Event, USA) (SUI ’21). Association for Computing
Machinery, New York, NY, USA, Article 12, 12 pages. https://doi.org/10.1145/
3485279.3485297

[19] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding
in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on computer supported cooperative work.
1277–1286.

[20] Brian Danchilla. 2012. Three.js Framework. In Beginning WebGL for HTML5.
Apress, Berkeley, CA, 173–203. https://doi.org/10.1007/978-1-4302-3997-0_7

[21] Mustafa Doga Dogan, Vivian Hsinyueh Chan, Richard Qi, Grace Tang, Thijs
Roumen, and Stefanie Mueller. 2023. StructCode: Leveraging Fabrication Artifacts
to Store Data in Laser-Cut Objects. In Proceedings of the 8th ACM Symposium on
Computational Fabrication (SCF ’23). Association for Computing Machinery, New
York, NY, USA, 1–13. https://doi.org/10.1145/3623263.3623353

[22] Mustafa Doga Dogan, Raul Garcia-Martin, Patrick William Haertel, Jamison John
O’Keefe, Ahmad Taka, Akarsh Aurora, Raul Sanchez-Reillo, and Stefanie Mueller.
2023. BrightMarker: 3D Printed Fluorescent Markers for Object Tracking. In
Proceedings of the 36th Annual ACM Symposium on User Interface Software and
Technology. ACM, San Francisco CA USA, 1–13. https://doi.org/10.1145/3586183.
3606758

[23] Mustafa Doga Dogan, Ahmad Taka, Michael Lu, Yunyi Zhu, Akshat Kumar,
Aakar Gupta, and Stefanie Mueller. 2022. InfraredTags: Embedding Invisible AR
Markers and Barcodes Using Low-Cost, Infrared-Based 3D Printing and Imaging
Tools. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (CHI ’22). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3491102.3501951 event-place: New Orleans, LA, USA.

[24] Paul Dourish and Victoria Bellotti. 1992. Awareness and coordination in shared
workspaces. In Proceedings of the 1992 ACM conference on Computer-supported
cooperative work - CSCW ’92. ACM Press, Toronto, Ontario, Canada, 107–114.
https://doi.org/10.1145/143457.143468

https://youtu.be/oeq2MVxE_H8?feature=shared&t=56
https://doi.org/10.1007/s10606-013-9192-8
https://doi.org/10.1145/882262.882352
https://doi.org/10.1145/882262.882352
https://doi.org/10.1145/2339530.2339665
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1162/152417302762251336
https://doi.org/10.5334/joh.7
https://github.com/joeycastillo/The-Open-Book/tree/reboot#state-of-the-book
https://github.com/joeycastillo/The-Open-Book/tree/reboot#state-of-the-book
https://doi.org/10.1109/COLCOM.2006.361859
https://doi.org/10.1145/3526113.3545684
https://doi.org/10.1145/3485279.3485297
https://doi.org/10.1145/3485279.3485297
https://doi.org/10.1007/978-1-4302-3997-0_7
https://doi.org/10.1145/3623263.3623353
https://doi.org/10.1145/3586183.3606758
https://doi.org/10.1145/3586183.3606758
https://doi.org/10.1145/3491102.3501951
https://doi.org/10.1145/143457.143468


SplatOverflow: Asynchronous Hardware Troubleshooting CHI ’25, April 26-May 1, 2025, Yokohama, Japan

[25] Kellie Dunn, Cynthia Feng, and Nadya Peek. 2023. Jubilee: A Case Study of
Distributed Manufacturing in an Open Source Hardware Project. Journal of Open
Hardware 7, 1 (May 2023), 4. https://doi.org/10.5334/joh.51

[26] Nadia Eghbal. 2020. Working in public: the making and maintenance of open source
software. Stripe Press.

[27] Susan R. Fussell, Robert E. Kraut, and Jane Siegel. 2000. Coordination of Commu-
nication: Effects of Shared Visual Context on Collaborative Work. In Proceedings
of the 2000 ACM Conference on Computer Supported Cooperative Work (Philadel-
phia, Pennsylvania, USA) (CSCW ’00). Association for Computing Machinery,
New York, NY, USA, 21–30. https://doi.org/10.1145/358916.358947

[28] Susan R. Fussell, Robert E. Kraut, and Jane Siegel. 2000. Coordination of communi-
cation: effects of shared visual context on collaborative work. In Proceedings of the
2000 ACM conference on Computer supported cooperative work. ACM, Philadelphia
Pennsylvania USA, 21–30. https://doi.org/10.1145/358916.358947

[29] Steffen Gauglitz, Cha Lee, Matthew Turk, and Tobias Höllerer. 2012. Integrating
the Physical Environment into Mobile Remote Collaboration. In Proceedings of
the 14th International Conference on Human-Computer Interaction with Mobile
Devices and Services (MobileHCI ’12). Association for Computing Machinery, New
York, NY, USA, 241–250. https://doi.org/10.1145/2371574.2371610 event-place:
San Francisco, California, USA.

[30] Steffen Gauglitz, Benjamin Nuernberger, Matthew Turk, and Tobias Höllerer.
2014. World-stabilized annotations and virtual scene navigation for remote
collaboration. In Proceedings of the 27th annual ACM symposium on User interface
software and technology. ACM, Honolulu Hawaii USA, 449–459. https://doi.org/
10.1145/2642918.2647372

[31] Alicia Gibb. 2015. Building open source hardware: DIY manufacturing for hackers
and makers. Pearson Education.

[32] Carl Gutwin and Saul Greenberg. 2002. A Descriptive Framework of Workspace
Awareness for Real-Time Groupware. Computer Supported Cooperative Work
(CSCW) 11, 3-4 (Sept. 2002), 411–446. https://doi.org/10.1023/A:1021271517844

[33] Antoine Guédon and Vincent Lepetit. 2023. SuGaR: Surface-Aligned Gaussian
Splatting for Efficient 3DMesh Reconstruction andHigh-QualityMesh Rendering.
(2023). https://doi.org/10.48550/ARXIV.2311.12775 Publisher: [object Object]
Version Number: 3.

[34] Hackaday. 2018. Interactive KiCAD BOMs Make Hand Assembly A
Breeze. https://hackaday.com/2018/09/04/interactive-kicad-boms-make-hand-
assembly-a-breeze/

[35] Steve Hodges and Nicholas Chen. 2019. Long Tail Hardware: Turning Device
Concepts Into Viable Low Volume Products. IEEE Pervasive Computing 18, 4 (Oct.
2019), 51–59. https://doi.org/10.1109/MPRV.2019.2947966 Conference Name:
IEEE Pervasive Computing.

[36] Shahram Izadi, David Kim, Otmar Hilliges, DavidMolyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. 2011. KinectFusion: real-time 3D reconstruction and
interaction using a moving depth camera. In Proceedings of the 24th annual
ACM symposium on User interface software and technology. ACM, Santa Barbara
California USA, 559–568. https://doi.org/10.1145/2047196.2047270

[37] Steven J. Jackson. 2014. Rethinking Repair. In Media Technologies: Essays on
Communication, Materiality, and Society, Tarleton Gillespie, Pablo J. Boczkowski,
and Kirsten A. Foot (Eds.). The MIT Press, 0. https://doi.org/10.7551/mitpress/
9780262525374.003.0011

[38] Janet G Johnson, Danilo Gasques, Tommy Sharkey, Evan Schmitz, and Nadir
Weibel. 2021. Do You Really Need to Know Where “That” Is? Enhancing Support
for Referencing in Collaborative Mixed Reality Environments. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,
Article 514, 14 pages. https://doi.org/10.1145/3411764.3445246

[39] Mitchell Karchemsky, J.D. Zamfirescu-Pereira, Kuan-Ju Wu, François Guim-
bretière, and Bjoern Hartmann. 2019. Heimdall: A Remotely Controlled In-
spection Workbench For Debugging Microcontroller Projects. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow,
Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY,
USA, 1–12. https://doi.org/10.1145/3290605.3300728

[40] Mark Kellog. 2024. 3D Gaussian splatting for Three.js. https://github.com/
mkkellogg/GaussianSplats3D

[41] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis.
2023. 3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM
Transactions on Graphics 42, 4 (Aug. 2023), 1–14. https://doi.org/10.1145/3592433

[42] Juho Kim, Phu Tran Nguyen, Sarah Weir, Philip J Guo, Robert C Miller, and
Krzysztof Z Gajos. 2014. Crowdsourcing step-by-step information extraction
to enhance existing how-to videos. In Proceedings of the SIGCHI conference on
human factors in computing systems. 4017–4026.

[43] Ke Li, Susanne Schmidt, Tim Rolff, Reinhard Bacher, Wim Leemans, and Frank
Steinicke. 2023. Magic NeRF Lens: Interactive Fusion of Neural Radiance
Fields for Virtual Facility Inspection. https://doi.org/10.48550/arXiv.2307.09860
arXiv:2307.09860 [cs].

[44] Tianqi Liu, Guangcong Wang, Shoukang Hu, Liao Shen, Xinyi Ye, Yuhang Zang,
Zhiguo Cao, Wei Li, and Ziwei Liu. 2024. MVSGaussian: Fast Generalizable

Gaussian Splatting Reconstruction from Multi-View Stereo. http://arxiv.org/
abs/2405.12218 arXiv:2405.12218.

[45] Chandan Luthra and Deepak Mittal. 2010. Firebug 1.5: Editing, Debugging, and
Monitoring Web Pages. Packt Publishing.

[46] Wayne G. Lutters and Mark S. Ackerman. 2007. Beyond Boundary Objects: Col-
laborative Reuse in Aircraft Technical Support. Computer Supported Cooperative
Work (CSCW) 16, 3 (June 2007), 341–372. https://doi.org/10.1007/s10606-006-
9036-x

[47] Blair Maclntyre and Trevor F Smith. 2018. Thoughts on the Future of WebXR
and the Immersive Web. In 2018 IEEE international symposium on mixed and
augmented reality adjunct (ISMAR-Adjunct). IEEE, 338–342.

[48] J. C. Mariscal-Melgar, Pieter Hijma, Manuel Moritz, and Tobias Redlich. 2023.
Semi-Automatic Generation of Assembly Instructions for Open Source Hardware.
Journal of Open Hardware 7, 1 (Aug. 2023), 6. https://doi.org/10.5334/joh.56

[49] Lukas Meyer. 2023. Aruco Scale factor Estimation for COLMAP. https://pypi.
org/project/aruco-estimator/

[50] Iván Sánchez Milara, Georgi V. Georgiev, Jani Ylioja, Onnur Özüduru, and
Jukka Riekki. 2019. "Document-while-doing": a documentation tool for Fab
Lab environments. The Design Journal 22, sup1 (April 2019), 2019–2030. https:
//doi.org/10.1080/14606925.2019.1594926

[51] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. http://arxiv.org/abs/2003.08934 arXiv:2003.08934 [cs].

[52] Rafael Munoz-Salinas. 2012. Aruco: a minimal library for augmented reality
applications based on opencv. Universidad de Córdoba 386 (2012).

[53] ThomasMüller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
NGP. ACM Transactions on Graphics 41, 4 (July 2022), 1–15. https://doi.org/10.
1145/3528223.3530127

[54] Ohan Oda, Carmine Elvezio, Mengu Sukan, Steven Feiner, and Barbara Tversky.
2015. Virtual Replicas for Remote Assistance in Virtual and Augmented Reality. In
Proceedings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology (Charlotte, NC, USA) (UIST ’15). Association for Computing Machinery,
New York, NY, USA, 405–415. https://doi.org/10.1145/2807442.2807497

[55] Edwin Olson. 2011. AprilTag: A robust and flexible visual fiducial system. In
2011 IEEE International Conference on Robotics and Automation. IEEE, Shanghai,
China, 3400–3407. https://doi.org/10.1109/ICRA.2011.5979561

[56] JULIAN E. ORR. 1996. Talking about Machines: An Ethnography of a Modern Job.
Cornell University Press. http://www.jstor.org/stable/10.7591/j.ctt1hhfnkz

[57] Ilona R Posner, Ronald M Baecker, and M Mantei. 1993. How people write
together. In Proceedings of the Hawaii International Conference on System Sciences,
Vol. 25. IEEE INSTITUTE OF ELECTRICAL AND ELECTRONICS, 127–127.

[58] Iulian Radu, Tugce Joy, Yiran Bowman, Ian Bott, and Bertrand Schneider. 2021. A
Survey of Needs and Features for Augmented Reality Collaborations in Collocated
Spaces. Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 169 (apr 2021),
21 pages. https://doi.org/10.1145/3449243

[59] Mike Ratcliffe. 2013. The History of Firebug. https://flailingmonkey.com/the-
history-of-firebug

[60] LA 3D Printer Repair. 2019. Prusa MK3S fixing stuck filament or bad unload.
https://www.youtube.com/watch?v=i5xnAQ5dHVs

[61] Mose Sakashita, Hyunju Kim, Brandon Woodard, Ruidong Zhang, and François
Guimbretière. 2023. VRoxy: Wide-Area Collaboration From an Office Using a
VR-Driven Robotic Proxy. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology. ACM, San Francisco CA USA, 1–13.
https://doi.org/10.1145/3586183.3606743

[62] Johannes Lutz Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In Conference on Computer Vision and Pattern Recognition (CVPR).

[63] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael
Frahm. 2016. Pixelwise View Selection for Unstructured Multi-View Stereo. In
European Conference on Computer Vision (ECCV).

[64] Noah Snavely, Steven M. Seitz, and Richard Szeliski. 2006. Photo tourism: explor-
ing photo collections in 3D. In ACM SIGGRAPH 2006 Papers on - SIGGRAPH ’06.
ACM Press, Boston, Massachusetts, 835. https://doi.org/10.1145/1179352.1141964

[65] Susan Leigh Star and James R. Griesemer. [n. d.]. Institutional Ecology, ‘Transla-
tions’ and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum
of Vertebrate Zoology, 1907-39. https://doi.org/10.1177/030631289019003001

[66] Blair Subbaraman and Nadya Peek. 2023. 3D Printers Don’t Fix Themselves:
How Maintenance is Part of Digital Fabrication. In Proceedings of the 2023 ACM
Designing Interactive Systems Conference. ACM, Pittsburgh PA USA, 2050–2065.
https://doi.org/10.1145/3563657.3595991

[67] Blair Subbaraman and Nadya Peek. 2023. 3D Printers Don’t Fix Themselves:
How Maintenance is Part of Digital Fabrication. In Proceedings of the 2023 ACM
Designing Interactive Systems Conference (Pittsburgh, PA, USA) (DIS ’23). As-
sociation for Computing Machinery, New York, NY, USA, 2050–2065. https:
//doi.org/10.1145/3563657.3595991

[68] KiCad Development Team. [n. d.]. KiCad EDA - Schematic Capture & PCB Design
Software. https://www.kicad.org/

[69] Theophilus Teo, Louise Lawrence, Gun A. Lee, Mark Billinghurst, and Matt
Adcock. 2019. Mixed Reality Remote Collaboration Combining 360 Video and 3D

https://doi.org/10.5334/joh.51
https://doi.org/10.1145/358916.358947
https://doi.org/10.1145/358916.358947
https://doi.org/10.1145/2371574.2371610
https://doi.org/10.1145/2642918.2647372
https://doi.org/10.1145/2642918.2647372
https://doi.org/10.1023/A:1021271517844
https://doi.org/10.48550/ARXIV.2311.12775
https://hackaday.com/2018/09/04/interactive-kicad-boms-make-hand-assembly-a-breeze/
https://hackaday.com/2018/09/04/interactive-kicad-boms-make-hand-assembly-a-breeze/
https://doi.org/10.1109/MPRV.2019.2947966
https://doi.org/10.1145/2047196.2047270
https://doi.org/10.7551/mitpress/9780262525374.003.0011
https://doi.org/10.7551/mitpress/9780262525374.003.0011
https://doi.org/10.1145/3411764.3445246
https://doi.org/10.1145/3290605.3300728
https://github.com/mkkellogg/GaussianSplats3D
https://github.com/mkkellogg/GaussianSplats3D
https://doi.org/10.1145/3592433
https://doi.org/10.48550/arXiv.2307.09860
http://arxiv.org/abs/2405.12218
http://arxiv.org/abs/2405.12218
https://doi.org/10.1007/s10606-006-9036-x
https://doi.org/10.1007/s10606-006-9036-x
https://doi.org/10.5334/joh.56
https://pypi.org/project/aruco-estimator/
https://pypi.org/project/aruco-estimator/
https://doi.org/10.1080/14606925.2019.1594926
https://doi.org/10.1080/14606925.2019.1594926
http://arxiv.org/abs/2003.08934
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/2807442.2807497
https://doi.org/10.1109/ICRA.2011.5979561
http://www.jstor.org/stable/10.7591/j.ctt1hhfnkz
https://doi.org/10.1145/3449243
https://flailingmonkey.com/the-history-of-firebug
https://flailingmonkey.com/the-history-of-firebug
https://www.youtube.com/watch?v=i5xnAQ5dHVs
https://doi.org/10.1145/3586183.3606743
https://doi.org/10.1145/1179352.1141964
https://doi.org/10.1177/030631289019003001
https://doi.org/10.1145/3563657.3595991
https://doi.org/10.1145/3563657.3595991
https://doi.org/10.1145/3563657.3595991
https://www.kicad.org/


CHI ’25, April 26-May 1, 2025, Yokohama, Japan Kwatra et al.

Reconstruction. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3290605.3300431

[70] Clive Thompson. 2020. Coders: The making of a new tribe and the remaking of the
world. Penguin.

[71] Balasaravanan Thoravi Kumaravel, Cuong Nguyen, Stephen DiVerdi, and Bjoern
Hartmann. 2020. TransceiVR: Bridging Asymmetrical Communication Between
VR Users and External Collaborators. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST
’20). Association for Computing Machinery, New York, NY, USA, 182–195. https:
//doi.org/10.1145/3379337.3415827

[72] Jasper Tran O’Leary, Thrisha Ramesh, Octi Zhang, and Nadya Peek. 2024. Tan-
dem: Reproducible Digital Fabrication Workflows as Multimodal Programs. In
Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM,
Honolulu HI USA, 1–16. https://doi.org/10.1145/3613904.3642751

[73] Sonja Utz and Lara N Wolfers. 2022. How-to videos on YouTube: The role of the
instructor. Information, Communication & Society 25, 7 (2022), 959–974.

[74] Keith Wagstaff. 2012. IKEA Starts ‘How to Build’ YouTube Channel to Help
Frustrated Customers | TIME.com. https://techland.time.com/2012/02/24/ikea-

starts-how-to-build-youtube-channel-to-help-frustrated-customers/
[75] Peng Wang, Xiaoliang Bai, Mark Billinghurst, Shusheng Zhang, Xiangyu Zhang,

Shuxia Wang, Weiping He, Yuxiang Yan, and Hongyu Ji. 2021. AR/MR remote
collaboration on physical tasks: A review. Robotics and Computer-Integrated
Manufacturing 72 (2021), 102071.

[76] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome
Revaud. [n. d.]. DUSt3R: Geometric 3D Vision Made Easy. ([n. d.]).

[77] Yutaka Yamauchi, Makoto Yokozawa, Takeshi Shinohara, and Toru Ishida. 2000.
Collaboration with Lean Media: how open-source software succeeds. In Proceed-
ings of the 2000 ACM conference on Computer supported cooperative work. ACM,
Philadelphia Pennsylvania USA, 329–338. https://doi.org/10.1145/358916.359004

[78] Mykyta Yevstifeyev. 2011. The ’view-source’ URI Scheme. Internet-Draft draft-
yevstifeyev-view-source-uri-01. Internet Engineering Task Force. https://
datatracker.ietf.org/doc/draft-yevstifeyev-view-source-uri/01/ Work in Progress.

[79] Kevin Yu, Ulrich Eck, Frieder Pankratz, Marc Lazarovici, DirkWilhelm, and Nassir
Navab. 2022. Duplicated reality for co-located augmented reality collaboration.
IEEE Transactions on Visualization and Computer Graphics 28, 5 (2022), 2190–2200.

https://doi.org/10.1145/3290605.3300431
https://doi.org/10.1145/3379337.3415827
https://doi.org/10.1145/3379337.3415827
https://doi.org/10.1145/3613904.3642751
https://techland.time.com/2012/02/24/ikea-starts-how-to-build-youtube-channel-to-help-frustrated-customers/
https://techland.time.com/2012/02/24/ikea-starts-how-to-build-youtube-channel-to-help-frustrated-customers/
https://doi.org/10.1145/358916.359004
https://datatracker.ietf.org/doc/draft-yevstifeyev-view-source-uri/01/
https://datatracker.ietf.org/doc/draft-yevstifeyev-view-source-uri/01/

	Abstract
	1 Introduction
	2 Walkthrough
	2.1 Creating a SplatOverflow Scene
	2.2 Visually Querying Documentation and Past Issues
	2.3 Asking for Help
	2.4 Providing Guidance
	2.5 Understanding Suggestions
	2.6 Back and Forth Communication

	3 Utility of SplatOverflow
	3.1 Existing Troubleshooting Artifacts
	3.2 Novel Capabilities
	3.3 Utility to Users

	4 Related Work
	4.1 Hardware Maintenance Practice
	4.2 Documentation Systems
	4.3 Telepresence for Expert Support
	4.4 Scanning and Spatial Rendering

	5 SplatOverflow
	5.1 Constituent Artifacts
	5.2 A SplatOverflow Scene
	5.3 Interacting with a SplatOverflow Scene
	5.4 Indexing Data to a CAD Model

	6 Implementation
	7 Demonstrative Examples
	7.1 Verifying the Correct Assembly of the Open Book E-Reader
	7.2 Sharing and Updating Routine Maintenance Workflows on the Prusa MK3S 3D Printer
	7.3 Guided Disassembly of the Billy Bookshelf

	8 Evaluation
	8.1 Study Design
	8.2 Part 1: Generating a SplatOverflow Scene
	8.3 Part 2: Following Instructions in SplatOverflow
	8.4 System Usability

	9 Discussion
	9.1 SplatOverflow Users
	9.2 Extending Multi-media Workflows
	9.3 Cross-Referencing, Inspectability and Information Sharing
	9.4 Technical Features

	10 Limitations
	10.1 Acquiring CAD Models
	10.2 Structure References in Technical Documentation
	10.3 Errors in Tag Placement

	11 Conclusion
	Acknowledgments
	References

